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Abstract: The paper deals with the state estimation of a second-order model of anaerobic 
digestion. This estimation is necessary to implement the sophisticated control algorithms that 
have already been developed for this process. Hereby design and performance of a classical 
Kalman filter (compared with other two deterministic estimation approaches) for the main 
variables of this model have been discussed and analysed by simulations.  
The performance analysis has been conducted at realistic random perturbations, comparable 
with experimental data, on the one hand, and on the other – with and without parameter 
perturbations. Although at random perturbations alone the Kalman filter has a clear 
advantage over the two equipollent deterministic estimators, at the presence also of 
parameter perturbations, to which the Kalman filter is more sensitive, no such advantage is 
guaranteed. 
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Introduction 
Anaerobic digestion (AD) is a biotechnological process widely used in life sciences and a 
promising method for solving some energy and ecological problems in agriculture and agro-
industry. In such kind of processes, usually carried out in continuously stirred tank bioreactors 
(CSTR), the organic matter is depolluted by microorganisms into biogas (mainly methane and 
carbon dioxide) and compost in the absence of oxygen [4].  
 
Many mathematical models of this process in CSTR are known [3, 5, 9]. They are systems of 
nonlinear ordinary differential equations with a great number of unknown coefficients.  
The estimation of these coefficients is a very difficult task [5, 9]. Quite often one obtains only 
local solutions and it is impossible to validate the model in a large domain of experimental 
conditions. 
 
In practice, only biogas flow rate can be easily measured on-line. However, to control this 
complex and strongly nonlinear process, sophisticated algorithms have been developed [3]. 
These algorithms include some unmeasurable variables that must be estimated. 
 
For the unmeasurable state variable estimation, when only the biogas flow rate is measurable, 
various estimators have been proposed [2, 3].  
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The aim of the paper* is to design a classical Kalman filter for the main variables of a simple 
nonlinear AD model and to quantify the robustness of the filter to step-wise model parameter 
perturbations. The real stochastic environment of the process is taken into account. 

 
Model description 
Consider the continuous AD state-space model presented in [9]: 
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where [X S]T is the state vector of the concentrations [g·dm-3] of biomass X and substrate S;  
D is the control input – dilution rate [day-1]; Q is the output – biogas flow rate [dm3·day-1]; 
constant parameters: k1 and k2 are yield coefficients; si is the input substrate concentration 
[g·dm-3]; the variable parameter µ is the specific growth rate of bacteria [day-1] assumed to be 
of Monod type: 
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where µm and ks are kinetic coefficients. 
 
The operational domain of the process is the constraint: 
 
0 < D < Dsup (3) 
 
where Dsup is the value at which washout of microorganisms takes place. 
 
Estimator design via Kalman filter 
Before using the Kalman filter, a preliminary linearisation [1, 7] of the AD model (1)-(2) is 
performed in the neighbourhood of a triple of trajectories: a chosen operating control input 
trajectory D0(t) and corresponding to D0(t) solutions X0(t) and S0(t) of the state equations  
in (1). 
 
Introducing the denotation: 
 

,)( 0020 XSkQ µ=  (4) 
 
the linearised model can be expressed as: 
 

                                                 
* Parts of the results presented herewith were published in the proceedings of the Int. Conf. 
“Automatics and Informatics’08” and “Automatics and Informatics’09” held in Sofia, Bulgaria. 
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where 
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∆F is a term provisioned to reflect disturbances as described below and the matrices A, B, C 
are: 
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It is assumed that the internal process perturbations are revealed in ∆D and in the additional 
disturbance term ∆F. The latter is introduced as an extension to the linearised form of the 
model (1)-(2) where all internal perturbations were referred to ∆D. This extension makes 
sense, since the checked small sensitivity of Q to changes in ∆D suggests that ∆D alone is 
able to present only a part of the internal perturbations.  
 
Both ∆D and ∆F are considered zero-mean Gaussian white noises with covariances 
respectively E[∆D(t).∆D(τ)] = q1δ(t – τ) and E[∆F(t).∆F(τ)] = q2δ(t – τ). Besides, another 
additive uncorrelated (with ∆D and ∆F) zero-mean Gaussian white noise with covariance  
rδ(t – τ) acts on the output Q in the course of measurement. It is supposed also that the initial 
state Y(0) of the linearised model (5) is a zero-mean Gaussian random vector. 
 
The Kalman filter providing optimal mean-square estimate Y  of Y is [10]: ˆ
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where  
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is the filter gain matrix, and the error covariance matrix P is obtained from the Riccati matrix 
differential equation: 
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Estimators for comparison 
Differential algebraic estimator 
On the basis of the differential algebraic approach, an exponentially stable estimator first for 
specific growth rate µ and then for biomass and substrate concentrations (respectively X  
and S) was obtained in [2] and is further compared with the Kalman filter. 
 
Classical adjustable estimator 
Introducing transformations and an auxiliary variable, an estimator first for µ and Q and then, 
as above, for biomass and substrate concentrations, was obtained in [8] and is also used for 
comparison. 

 
Simulation studies 
Performance analysis at random perturbations 
The model coefficients have the following values [9]: k1 = 6.7; k2 = 16.8; si = 7.4 g·dm-3;  
µm = 0.35 day-1; ks = 2.3 g·dm-3. The model initial conditions: X(0) = 0.450 g·dm-3;  
S(0) = 0.383 g·dm-3 are strongly non-equilibrium and supposed unknown to the three 
estimators having rather different initial estimates: 0.179 g·dm-3 for X(0) and 1.335 g·dm-3 for 
S(0). 
 
The entire control input range of practical interest is covered by choosing the nominal control 
input D0 values between 0.03 and 0.09 day-1 (the latter value equals to 90% of the value 
maximising the equilibrium Q under the above coefficient values). The transition to an 
equilibrium takes from 0th to 80th day for the nominal (corresponding to D0) model variables 
under D0 = 0.06 day-1. This period suffices to compare the convergence times of the initial 
estimator estimates to the corresponding model variables under constant control input. 
Afterwards consecutive transitions (smaller than that above) to other equilibrium states in the 
mentioned range at each 10 days (sufficient for the transitions) are performed under the 
following (on Fig. 1) time profile of D0 [day-1]: 0.075 – day 80 to 90; 0.09 – day 90 to 100; 
0.075 – day 100 to 110; 0.06 – day 110 to 120; 0.045 – day 120 to 130; 0.03 – day 130 to 140; 
0.045 – day 140 to 150; 0.06 – day 150 to 180. 
 

 
Fig. 1 Control input 

 
The term ∆F is considered additive also to the first equation of (1). The process uncertainties 
and perturbation levels are modelled by choosing the values of the covariance parameters as 
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follows. The small value of q1 = 1.27×10-4 day-2 guarantees the observance of the operational 
constraint (3) for the entire considered range of D0, as depicted on Fig. 1. Yet it should be 
considered to contain a referred noise component, since q1 ≈ (0.2D0)2. The choice of  
q2 = 1.27 [g·dm-3·day-1]2 together with that of q1 determines the level of the internal 
perturbations. The measurement noise level is determined by r = 2.5×10-3 (dm-3·day-1)2.  
The average relative disturbances of the output Q due to internal perturbations and to 
measurement noise up to the current simulation time are shown on Fig. 2. The curves on this 
figure are realistic, since they are comparable with experimental data. 
 

 
Fig. 2 Influence of internal perturbations and measurement noise on output 

 
The simulations require also adjusting estimator parameters as follows: for the Kalman filter, the 
initial condition of Eq. (10) is chosen large enough, viz. P(0) = 50I2, with I2 denoting the 2×2 
identity matrix; and the tuning parameter h ≈ 2 was checked to ensure the best performance of the 
classical adjustable estimator. 
 
The properties of the three estimators are compared for the variable µ and states X and S by 
simulations shown on Fig. 3 to Fig. 8 under the above conditions. The estimation of µ is 
presented on Fig. 3 for the Kalman filter and for the classical adjustable estimator, and on  
Fig. 4 for the differential algebraic estimator. On about day 40, the average relative errors of 
the first and second estimator are checked to be equal. The convergence time of the initial 
estimate to the model µ is about 50 days for the first one, whereas for the second one on about 
day 15 the maximum possible convergence is reached, being rather unstable in the remaining 
simulation time and especially after day 80.  
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Fig. 3 Estimation of µ by Kalman filter and classical adjustable estimator 

 

 
Fig. 4 Estimation of µ by differential algebraic estimator 

 
The behaviour of the differential algebraic estimator on Fig. 4 is very close to that of the 
classical adjustable estimator. Although producing more fluctuating estimates, its average 
relative error at any simulation time was checked to be nearly the same as that of the latter. 
 
The estimation of X is presented on Fig. 5 for the Kalman filter and for the classical adjustable 
estimator, and on Fig. 6 for the differential algebraic estimator. The first estimator mostly 
tracks the model X, except mainly for about 30 days – from about day 90 to 120, when it is 
inexact, with rare full failures and mostly equipollent with the second one. However, the 
second one is inexact from about day 30 on. The estimates of the differential algebraic 
estimator on Fig. 6 are nearly the same as those of the classical adjustable estimator. 
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Fig. 5 Estimation of X by Kalman filter and classical adjustable estimator 

 

 
Fig. 6 Estimation of X by differential algebraic estimator 

 

 
Fig. 7 Estimation of S by Kalman filter and classical adjustable estimator 
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The estimation of S is presented on Fig. 7 for the Kalman filter and for the classical adjustable 
estimator, and on Fig. 8 for the differential algebraic estimator. The above about the 
estimation of µ holds with respect to S too. 
 
Performance analysis at parameter perturbations 
Parameter perturbations are due to imprecise parameter values or to their unpredictable 
deterministic changes. Therefore, robustness analysis is an indispensable step of the estimator 
design.  

 
The robustness of the estimators designed above have been investigated regarding parameters 
k1, µm and si at D = 0.06 day-1 for the variables µ and X. Some results are presented on Fig. 9 
to Fig. 14. The perturbations of all the three parameters are applied at days 80 (+20%), 100  
(–20%), 120 (–20%) and 140 (+20%). For the variable µ, in all figures numbered “a” the 
respective model variable (with and without noise), the Kalman filter and classical estimator 
estimates are presented. On those figures numbered “b”, the respective model variable (with 
and without noise) together with the differential estimator estimates are shown. The same is 
for the variable X, except that the classical estimator estimates are shown on the “b” figures.  
 

 
Fig. 8 Estimation of S by differential algebraic estimator 

 
The Kalman filter tracks well the parameter perturbations at days 80 and 100 on Fig. 9a; all 
the four perturbations on Fig. 11a; all the perturbations but the one at day 100 on Fig. 12a and 
in these cases performs better than the two deterministic estimators. However, in the other 
perturbation cases it performs much worse, which cannot be avoided or provisioned. As in the 
case of random perturbations, the two deterministic estimators produce nearly the same 
average relative error when estimating µ, or their estimates practically coincide when 
estimating X. The sensitivity of these estimators to parameter perturbations is low in all the 
considered cases.  
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Fig. 9a Estimation of µ at parameter perturbation of k1 by Kalman filter  

and classical adjustable estimator 
 

 
Fig. 9b Estimation of µ at parameter perturbation of k1 by differential algebraic estimator 
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Fig. 10a Estimation of X at parameter perturbation of k1 by Kalman filter 

 

 
Fig. 10b Estimation of X at parameter perturbation of k1 by classical adjustable  

and differential algebraic estimators 
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Fig. 11a Estimation of µ at parameter perturbation of µm by Kalman filter  

and classical adjustable estimator 
 

 
Fig. 11b Estimation of µ at parameter perturbation of µm by differential algebraic estimator 
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Fig. 12a Estimation of X at parameter perturbation of µm by Kalman filter 

 

 
Fig. 12b Estimation of X at parameter perturbation of µm by classical adjustable  

and differential algebraic estimators 
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Fig. 13a Estimation of µ at parameter perturbation of si by Kalman filter  

and classical adjustable estimator 
 

 
Fig. 13b Estimation of µ at parameter perturbation of si by differential algebraic estimator 
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Fig. 14a Estimation of X at parameter perturbation of si by Kalman filter 

 

 
Fig. 14b Estimation of X at parameter perturbation of si by classical adjustable  

and differential algebraic estimators 
 
Conclusion 
In this paper, three estimators, based only on the online measurement of Q, are compared by 
simulations taking into consideration random perturbations that may occur in a real process. 
The first one is a Kalman filter, and the other two are deterministic – a classical adjustable 
estimator and a differential algebraic estimator. The random perturbations deteriorate the 
performance of the deterministic estimators. 
 
The convergence of the assumed initial estimates to the model variables is mostly 
commensurate for the three estimators. Presumably, considerable changes in the state of the 
nominal (unperturbed) model are harder to be tracked by any of the estimators. However, 
smaller changes (as those after simulation day 80) evidence the advantage of the Kalman filter 
over the two equipollent deterministic estimators despite the considerable change in D0. 
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The robustness analysis through simulations evidences that the two deterministic estimators 
again are of equal worth but substantially distinct from the Kalman filter. The latter is more 
sensitive to a series of parameter perturbations, especially to those of k1 and si, for both 
variables µ and X, thus losing its advantage mentioned above. However, at lower values of the 
parameter perturbations or at rarer ones than those simulated, the Kalman filter’s robustness 
might rate higher and then it should be preferred. 
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