
D. S. JONES, M. J. PLANK, B. D. SLEEMAN DIFFERENTIAL EQUATIONS AND MATHEMATICAL BIOLOGY

Chapman & Hall/CRC ISBN-13: 978-1-42008-357-6 Hardcover 462 pages 2nd edition (Nov. 09, 2009) The conjoining of mathematics and biology has brought about significant advances in both areas, with mathematics providing a tool for modelling and understanding biological phenomena and biology stimulating developments in the theory of nonlinear differential equations. The continued application of mathematics to biology holds great promise and in fact may be the applied mathematics of the 21st century.

Differential Equations and Mathematical Biology provides a detailed treatment of both ordinary and partial differential equations, techniques for their solution, and their use in a variety of biological applications. The presentation includes the fundamental techniques of nonlinear differential equations, bifurcation theory, and the impact of chaos on discrete time biological modelling. The authors provide generous coverage of numerical techniques and address a range of important applications, including heart physiology, nerve pulse transmission, chemical reactions, tumour growth, and epidemics.

This book is the ideal vehicle for introducing the challenges of biology to mathematicians and likewise delivering key mathematical tools to biologists. Carefully designed for such multiple purposes, it serves equally well as a professional reference and as a text for coursework in differential equations, in biological modelling, or in differential equation models of biology for life science students.

New to the Second Edition is:

- A section on spiral waves
- Recent developments in tumor biology
- More on the numerical solution of differential equations and numerical bifurcation analysis
- MATLAB[®] files available for download online
- Many additional examples and exercises.

Table of Contents

1.	Introduction		1
	1.1	Population growth	1
	1.2	Administration of drugs	4
	1.3	Cell division	9
	1.4	Differential equations with separable variables	11
	1.5	Equations of homogeneous type	14
	1.6	Linear differential equations of the first order	16
	1.7	Numerical solution of first-order equations	19
	1.8	Symbolic computation in MATLAB	24
	1.9	Notes	27

2.	Line	ar Ordinary Differential Equations with Constant Coefficients	33
	2.1	Introduction	33
	2.2	First-order linear differential equations	35
	2.3	Linear equations of the second order	36
	2.4	Finding the complementary function	37
	2.5	Determining a particular integral	41
	2.6	Forced oscillations	50
	2.7	Differential equations of order <i>n</i>	52
	2.8	Uniqueness	55
3.	•	ms of Linear Ordinary Differential Equations	61
	3.1	First-order systems of equations with constant coefficients	61
	3.2	Replacement of one differential equation by a system	64
	3.3	The general system	66
	3.4	The fundamental system	68
	3.5	Matrix notation	72
	3.6	Initial and boundary value problems	77
	3.7	Solving the inhomogeneous differential equation	82
	3.8	Numerical solution of linear boundary value problems	84
4.		elling Biological Phenomena	91
	4.1	Introduction	91
	4.2	Heartbeat	91
	4.3	Nerve impulse transmission	94
	4.4	Chemical reactions	100
	4.5	Predator-prey models	106
5.		-Order Systems of Ordinary Differential Equations	115
	5.1	Existence and uniqueness	115
	5.2	Epidemics	118
	5.3	The phase plane and the Jacobian matrix	119
	5.4	Local stability	121
	5.5	Stability	128
	5.6	Limit cycles Forced oscillations	133
	5.7 5.8	Numerical solution of systems of equations	139
	5.8 5.9	Symbolic computation on first-order systems of equations and higher-order equations	143 147
	5.9 5.10	Numerical solution of nonlinear boundary value problems	147
	5.11	Appendix: existence theory	149
6.	Matl	nematics of Heart Physiology	163
	6.1	The local model	163
	6.2	The threshold effect	166
	6.3	The phase plane analysis and the heartbeat model	168
	6.4	Physiological considerations of the heartbeat cycle	171
	6.5	A model of the cardiac pacemaker	173
	6.6	Notes	175
7.	Math	nematics of Nerve Impulse Transmission	177
-	7.1	Excitability and repetitive firing	185
	7.2	Travelling waves	187
	7.3	Qualitative behavior of travelling waves	190
	7.4	Piecewise linear model	194

8.	Chemical Reactions		
	8.1 Wavefronts for the Belousov-Zhabotinskii reaction	197	
	8.2 Phase plane analysis of Fisher's equation	198	
	8.3 Qualitative behavior in the general case	199	
	8.4 Spiral waves and $\lambda - \omega$ systems	204	
	8.5 Notes	207	
9.	Predator and Prey	211	
	9.1 Catching fish	211	
	9.2 The effect of fishing	213	
	9.3 The Volterra-Lotka model	215	
10.	. Partial Differential Equations	223	
	10.1 Characteristics for equations of the first order	223	
	10.2 Another view of characteristics	230	
	10.3 Linear partial differential equations of the second order	232	
	10.4 Elliptic partial differential equations	235	
	10.5 Parabolic partial differential equations	239	
	10.6 Hyperbolic partial differential equations	239	
	10.7 The wave equation	240	
	10.8 Typical problems for the hyperbolic equation	245	
	10.9 The Euler-Darboux equation	250	
	10.10 Visualization of solutions	251	
11.	. Evolutionary Equations	259	
	11.1 The heat equation	259	
	11.2 Separation of variables	262	
	11.3 Simple evolutionary equations	269	
	11.4 Comparison theorems	277	
	11.5 Notes	289	
12.	. Problems of Diffusion	293	
	12.1 Diffusion through membranes	293	
	12.2 Energy and energy estimates	299	
	12.3 Global behavior of nerve impulse transmissions	304	
	12.4 Global behavior in chemical reactions	308	
	12.5 Turing diffusion driven instability and pattern formation	311	
	12.6 Finite pattern forming domains12.7 Notes	321 325	
	12.7 Notes	323	
13.	5. Bifurcation and Chaos	329	
	13.1 Bifurcation	329	
	13.2 Bifurcation of a limit cycle	334	
	13.3 Discrete bifurcation and period-doubling13.4 Chaos	336 342	
	13.5 Stability of limit cycles	342	
	13.6 The Poincaré plane	340	
	13.7 Averaging	350	
4.4			
14.	14.1 Eived points and stability	367	
	14.1 Fixed points and stability	367	
	14.2 Path-following and bifurcation analysis	370 376	
	14.3 Following stable limit cycles14.4 Bifurcation in discrete systems	378	
	14.5 Strange attractors and chaos	378	
	The Strange attractors and chuos	500	

	14.6	Stability analysis of partial differential equations	384
	14.7	Notes	385
15.	. Growth of Tumors		389
	15.1	Introduction	389
	15.2	Mathematical model I of tumor growth	392
	15.3	Spherical tumor growth based on model I	395
	15.4	Stability of tumor growth based on model I	399
	15.5	Mathematical model II of tumor growth	401
	15.6	Spherical tumor growth based on model II	404
	15.7	Stability of tumor growth based on model II	406
	15.8	Notes	407
16.	. Epidemics		411
	16.1	The Kermack-McKendrick model	411
	16.2	Vaccination	413
	16.3	An incubation model	414
	16.4	Spreading in space	418
Ans	swers	to Selected Exercises	427
Index			439