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Abstract: Often, while analyzing naturally generated signals (such as speech, seismogram, 
electroencephalogram, etc.), questions of stationarity and Gaussianity (normality) arise. 
This paper presents a brief literature overview focused on different methods proposed for 
assessing stationarity and Gaussianity of electroencephalogram (EEG). Summaries of 
several methods are discussed. 
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Introduction 
Electroencephalography (EEG) is the recording of electrical activity of neurons within the 
(usually human) brain performed across the scalp [11]. Due to the nature of EEG, its 
processing often requires detection of non-stationary and non-Gaussian regions. For instance, 
a spectral analysis can only be performed for stationary data, stationarity, therefore, may be 
considered as an essential property to assess while processing EEG signals. 
 
To be stationary, the signal’s statistical characteristics should not vary over time. In other 
words, the signal should be time-invariant, which leads to the following conclusion: the 
average power of a stationary process must be constant over time. To be strict-sense 
stationary, the process’ mean value, standard deviation, the autocorrelation function, and its 
statistical moments of all orders must not change over time. The latter is rarely possible to 
verify in practice. More practically, the process is usually defined as weakly (or wide-sense) 
stationary if only the requirements regarding its mean value and the autocorrelation function 
are met. 
 
In this report, we present a brief literature overview summarizing various approaches to 
stationarity and Gaussianity analysis of EEG in their historical retrospective. 
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Overview of methods 
First statistical models of EEG generation were proposed in 1950th suggesting that EEG might 
be described as a general Gaussian process [22, 24, 36]. The latter might indicate that the 
sources of EEG activity (neurons) are acting as independent oscillators. As a result, 
Gaussianity of EEG may be explained using the Central Limit Theorem stating that a sum of a 
large enough number of independent identically distributed random values tends to have 
Gaussian distribution. This observation, however, was not confirmed by other authors [15, 16, 
25]. Since the EEG data were usually segmented into short fragments for the analysis, the 
latter disagreement, therefore, might be attributed to dissimilar durations of EEG fragments 
used by different authors. Thus the question of proper EEG segmentation appeared as 
important and was extensively studied by researchers since then. 
 
In 1967, Campbell suggested that EEG should be considered as a stationary process [16]. 
Justifying this assumption, he stated: “Practically, it is not possible to obtain an ensemble of 
the brain wave process. In fact it is only possible to obtain one realization of the process”  
[16, 37]. His further remark was to find a general descriptor that can detect any small 
statistical changes. Campbell also performed several tests to verify the Gaussianity of EEG. 
He suggested studying first the amplitude distribution of the EEG that may later be compared 
to the Gaussian distribution. The latter might be achieved, for instance, by the chi-square test. 
Campbell concluded that 96.7% of thirty 1-minute long fragments he analyzed were not 
Gaussian: “The brain wave is not a Gaussian process because not even its amplitude 
distribution is Gaussian” [37]. 
 
In his research in 1969, Elul compared two different states of the brain: the idle brain state 
and the mental task state [31]. He hypothesized that, in the idle brain state, EEG should 
mostly be Gaussian. Elul proposed dividing EEG data into 2 second-long epochs and 
comparing the amplitudes of these epochs. He has concluded that, in the idle state, 66% of 
EEG was Gaussian; while performing mental tasks decreased this figure to 32%. Elul 
suggested that the amplitude analysis of EEG may provide an important insight on mental 
activities. Considering the amplitude distribution, any mental task may lead to an observable 
decrease in Gaussianity [31]. While some later studies agreed with Elul, other authors have 
questioned his conclusions [17, 20]. Similarly to Campbell, Elul also used the chi-square 
technique to assess whether the 2-second epochs can be deemed Gaussian. Justifying his 
choice of 2 seconds for the epoch duration, he wrote: “Although it might appear that a larger 
sample should contribute to increase confidence, this is true only if the statistical properties of 
the data are homogenous throughout duration of the entire record (in other words, the data 
should exhibit stationarity in the wide sense). It has been observed that with data blocks 
lasting over 2 seconds, the effects of inherent non-stationarity of the EEG become 
increasingly serious, leading to erroneously low estimates of goodness-of-fit” [31]. Although 
Elul’s method was based on the direct interpretation of Gaussianity, only the amplitude 
distribution was considered. As proposed later [18], other statistical tests (such as kurtosis 
excess, skew factor, or correlations comparison) may be implemented to extract Gaussian and 
stationary fragments with higher confidence. 
 
McEwen, in his work in 1975, has partitioned an EEG signal into two equal epochs. He 
assumed that, if the original EEG record was wide-sense stationary, the amplitude 
distributions and the power spectra of these two epochs should not differ significantly. This 
assumption was then verified by the Kolmogorov-Smirnov test since McEwen generally 
observed better results while using sample mean and variance than with the chi-square test  
[5, 10, 17, 23]. According to the author, assessing the amplitude distribution of a set of EEG 
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samples for stationarity can be achieved using a goodness of fit test verifying whether the 
EEG epochs are wide-sense stationary. McEwen also discussed the importance of sampling 
frequency: “In practice, as the rate of sampling a band limited EEG segment increases above 
the Nyquist rate, successive samples become more interdependent and the efficacy of 
statistical hypothesis tests is consequently affected. It is therefore not surprising that one study 
of 2 sec EEG segments which were sampled at 200 Hz concluded that resting EEG activity is 
Gaussian 66 percent of the time, while other studies of EEG segments of similar duration 
which were sampled at 5000 Hz concluded that resting EEG activity is strongly non-
Gaussian” [12, 13, 17, 31]. 
 
The effects of increasing sampling rate on the results of Kolmogorov-Smirnov test for 
Gaussianity are illustrated in Fig. 1 [17] where the initial sampling frequency, Fs, was selected 
as 64 Hz – slightly above the Nyquist rate. 
 

 
Fig. 1 Effect of increasing sampling rate  

on K-S goodness of fit tests for Gaussianity [17] 
 
As seen in Fig. 1, increasing sampling frequency leads to a significant decrease in the 
percentage of fragments deemed as Gaussian. The critique attributed to the McEwen’s 
approach is the limitation of the sampling frequencies to the range from 64 Hz to 512 Hz 
since the selection of sampling frequency should be based on the signal’s spectrum [19]. 
 
In the summary, McEwen concluded that short fragments (up to 10 s) generally follow the 
normal distribution while longer fragments (up to 60 s) are not Gaussian. He suggested that 
EEG might be viewed as a process composed from short Gaussian fragments. A fraction of 
fragments that may be considered as Gaussian reduces from 90% to 20% when the fragments’ 
duration increases from 4 to 60 seconds [17]. On the other hand, up to 90% of 4 second-long 
fragments may be deemed wide sense stationary while this number reduces to 70-80% when 
analyzing 16 second-long EEG fragments [17]. 
 
In 1973, Kawabata indicated that statistical properties of the EEG sequence should not change 
over time to ensure stationarity required for the spectral analysis [19]. He defined two 
conditions for an individual: “eyes closed” and “eyes opened” to compare EEG series. 
Kawabata assumed that 1-second epochs were definitely stationary [19-21]. He segmented ten 
5 second-long EEG signals into twenty 2.5-second fragments for both eyes closed and eyes 
opened conditions. The mean, variance and power spectra were estimated for each fragment. 
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Author applied the “run test” and the “trend test” to these 3-parameter sequences formed out 
of mean, variance, and power spectrum [22]. 
 
Kawabata described the run test as follows: “The sequence can be classified into (+) or (-) 
depending on each value of the sequence. (+) may be given if the value is greater than a 
constant (e.g., a median of the sequence), otherwise (-) may be given. Thus the sequence of 
(+) and (-) can be obtained. A run is defined as a sequence of identical observations that are 
followed or preceded by a different observation or no observation at all.” [25]. The trend test 
can be viewed as an interactive version of the run test where the threshold level is not a 
constant, but a variable that may be adjusted according to the trend observed in the sequence 
[29]. 
 
For 25 second-long EEG fragments, no rejections from the run and from the trend tests were 
observed. Therefore, the assessment of non-stationarity based on the run and trend tests 
indicated that 25 second-long series were locally stationary. Repeating the experiment with 
twenty 2.5-second fragments (total of 50 seconds of EEG record), 10-20% of the records were 
rejected by the trend test, while the run test results were unchanged [29]. Two students (22 
and 26 years old) were serving as the experimental subjects. Kawabata concluded that EEG of 
duration up to 25 seconds might be considered as a stationary series since there were very 
small amount of rejections by any of the two tests (for neurologically normal EEG) [29, 30]. 
On the other hand, by increasing the duration of the signal parts assumed as locally stationary, 
Kawabata observed a significant decrease in the stationarity of the EEG signal. 
 
In his paper published in 1977, Cohen presented a brief literature overview and discussed a 
theory for the estimation of duration of locally stationary fragments [6]. For his experiments, 
104 neurologically normal subjects have participated in EEG acquisition. The subjects were 
relaxed, quiet, and resting on a bed in a darkened room with their eyes closed. Similarly to 
Kawabata, Cohen also assumed that 1-second epochs were stationary [6, 7, 20]. Evaluating 
the average amplitude of the 128 epochs, Cohen found medians of different statistical 
parameters corresponding to these 128 1-second epochs and clustered medians in sequences 
[6]. Comparing each parameter to its median, he labeled the epochs as positive if the 
parameter was above the median or negative otherwise. Cohen concluded that, based on the 
mean value and the frequency structure, EEG epochs up to 12 seconds in duration may be 
considered as stationary with the negligible error [6, 7]. He also suggested that, based on the 
behavior of the mean value only, 24 second-long EEG fragments might be assumed as 
stationary. The later resulted in the probability of error of 10% [6, 7]. Finally, approximately 
35% of 64 second-long EEG fragment were deemed as non-stationary [6]. 
 
Another approach to the EEG stationarity analysis, an adaptive segmentation proposed by 
Bodenstein and Praetorius, Jansen, and colleagues in 1977 [2, 14], implemented evaluation of 
a model of EEG (for instance, autoregressive) for short fragments first. The fragment duration 
was then incrementally increased (a growing time window was formed) while the model 
parameters were repeatedly evaluated and compared to their previous estimates. The fragment 
duration, at which the difference between two sets of parameters exceeded some pre-defined 
threshold, was deemed the critical duration for stationarity [2, 14]. 
 
Jansen in 1981 applied a 5th order autoregressive model to EEG using Kalman filtering 
technique [3]. Comparing Kalman filtering approach with the DFT-based method of EEG 
spectral estimation, author suggested that the parametric technique provides more reliable 
results for estimations in time in the presence of noise. Kalman approach may be viewed as an 
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adaptive method providing high-resolution spectral estimations even for non-complete 
periods of the waveform [4]. Bohlin has defined Kalman filtering as an estimator for the time 
varying AR model coefficients [35]. 
 
Jansen compared the results obtained with a Kalman filter to the results of the adaptive 
segmentation previously explored while using the same EEG data [3, 14]. He concluded that 
the piecewise analysis method is more useful “in extracting elementary patterns from an 
EEG” then the adaptive segmentation [3]. 
 
An alternative approach, referred to as a non-parametric segmentation technique, was 
developed in 1993-1999. Authors proposed a method of detection of the change-points 
(boundaries of locally stationary segments) in the EEG time series pre-filtered in the alpha 
rhythm [1, 8, 32]. A synchrony index was computed for the alpha power using a proprietary 
software tool and compared to a threshold to assess whether the examined EEG sample 
should be viewed as a change point. For the 12 normal subjects participating in the study, 
authors reported the average duration of locally stationary fragments as 0.7-0.8 second 
depending on the EEG channel. No significant difference between the eyes open and eyes 
closed conditions were observed [33]. 
 
Other methods of EEG stationarity analysis include, for instance, use of smooth localized 
complex exponentials (SLEX) [34], the generalized state-space approach [21], and the 
techniques exploring the complexity of EEG series [9]. While classifying nonstationary time 
series, SLEX derived from Fourier complex exponentials provides functions localized in time 
and frequency making the transform suitable for the analysis of nonstationary data [26, 34]. 
This method can also be applied to seismic recordings of earthquake origins or nuclear 
explosions. The spectral estimate of the signal can be obtained with the SLEX transform and 
algorithms. Another novel approach to assess non-stationarity of EEG, the state space model 
[21], assumes that time series may be represented as a set of processes driven by frequency-
specific noise sequences. The non-stationarity is accounted by the noise variance that is 
changing over time [21]. Despite emerging of these new analysis techniques, segmentation of 
non-stationary signals into locally stationary fragments is still, perhaps, the most frequently 
used in practice. 
 
Conclusion 
Segmentation of non-stationary time series is an established approach used in the analysis of 
EEG together with other techniques. On the other hand, individual conditions and states may 
considerably alter the properties of EEG making it non-stationary. Since many practical 
analysis methods are defined for the stationary signals only, the correct segmentation is 
critical for an accurate EEG processing. 
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