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Abstract: Tung tree (Vernicia fordii) is one of the important oil plants in China. The current 
researches on tung tree are mainly focused on the cultivation and breeding while the 
molecular mechanisms hidden in the back of tung tree’s phenotypes are still uncovered.  
This research compared the transcriptome of three different stages during tung tree’s seed 
development using RNA-Seq and obtained a lot of differentially expressed Unigenes. 
Through GO classification and pathway enrichment analysis, all of these differentially 
expressed Unigenes were classified into 128 signaling pathways including fatty acid 
biosynthesis. Fourteen homologous proteins were obtained when the sequences of  
54 Unigenes within fatty acid biosynthesis pathway were aligned against KEGG database 
and the expression profiles of the genes encoding these proteins during seed development 
were analyzed. This research provides necessary data platform to elucidate the molecular 
mechanism underlies fatty acid biosynthesis of tung tree's seeds and theoretical guidance of 
tung tree varieties' improvement to increase output of tung oil. 
 
Keywords: Tung tree, Seed development, Transcriptome, Fatty acid biosynthesis, 
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Introduction 
Tung tree (Vernicia fordii) originating in China is a world-renowned industrial oil tree and 
has some excellent features such as a long history of cultivation, a wide range of distribution 
and rapid growth [1]. Tung oil extracted from tung tree's seeds has a high economic value and 
can be used to make industrial materials such as coating and paint. However, researches on 
tung tree so far have focused on cultivation and breeding and there are no in-depth molecular 
studies. Existing molecular biology researches were only limited to homologous gene's clone 
and have yet to involve identification of gene's function and analysis of its role in signal 
network [2-6]. The main reason for this phenomenon is caused by the lack of useful reference 
information. The next-generation sequencing technologies provide necessary technical 
approaches to solve this problem. Until now there are a lot of successful researches in the 
field of plant molecular biology based on next-generation sequencing technologies [7-10]. 
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Transcriptome sequencing also known as RNA-Seq which is one of the next-generation 
sequencing technologies has many advances such as high-throughput, low-cost, high 
sensitivity, good reproducibility and un-necessity of a known reference sequence compared 
with gene chip and gradually replaces the gene chip as the primary approach of transcriptome 
research [11-14]. RNA-Seq detected more differentially expressed genes than gene chip under 
the same FDR (false discovery rate) value [15]. Moreover, it can carry out transcriptome 
analysis without reference genome sequence. 
 
Tung oil is made up of many kinds of fatty acids which are synthesized through fatty acid 
biosynthesis metabolic pathway [16]. The expressive regulation researches of genes involved 
in fatty acid biosynthesis contribute to better understanding in tung oil synthesis and lay the 
theoretical foundation for tung tree's improvement using genetic engineering methods. This 
research provides the necessary data to further explore the molecular mechanism of the fatty 
acid synthesis of tung tree and theoretical guidance for improving tung tree's varieties. 
 
Materials and methods 
Plant materials and total RNA isolation 
Due to the rapid oil accumulation during their development, tung tree's seeds were sampled as 
research material at three different stages (June, August, and October) which represents the 
seed's typical developmental state. Total RNA was isolated from the seeds with RNeasy Plant 
Mini Kit (Qiagen). The remaining potential genomic DNA contamination in the total RNA 
sample was eliminated by RNase-free DNase I (Takara).  
 
Sequencing library preparation and transcriptome sequencing 
First-strand cDNA synthesis was performed by SuperScriptTM II RT (Invitrogen) using 
random hexamer primers. Second-strand cDNA was synthesized using E. coli DNA 
polymerase I (Invitrogen). The paired-end cDNA library used for RNA sequencing was 
prepared according to Illumina's protocols. RNA sequencing was performed on a HiSeq 2000 
platform. 
 
Original data processing, sequence assembly and screening of differentially 
expressed Unigenes 
Image data acquired from transcriptome sequencing was transformed into short nucleotide 
sequences (raw reads) and each of these sequences was called “reads”. Clean reads were 
obtained while low quality reads, such as reads contain adaptor sequence, with unknown 
nucleotide ratio greater than 5%, were eliminated from raw reads. In view of no reference 
genome sequence, tung tree's transcriptome sequencing data was de novo assembled by 
Trinity software [17]. Reads with overlapping sequence were assembled into long sequence 
fragments called contigs and then these contigs were subsequently assembled into no longer 
extended sequences called Unigenes. The expression levels of all Unigenes were calculated 
with FPKM (fragments per kb per million fragments) algorithm in order to find out 
differentially expressed Unigenes [18]. The genes with Benjamini-Hochberg corrected  
p-values less than 0.05 were defined as differentially expressed.  
 
Functional annotation, GO classification and pathway enrichment analysis  
of Unigenes 
In order to obtain protein annotation information, Unigene sequences were aligned against 
online protein database such as nr, Swiss-Prot, KEGG and COG. Unigenes were then 
categorized into gene ontologies using Blast2GO software after alignments [19].  
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Gene overrepresentations in the GO (gene ontology) categories were calculated using a fisher 
test with the criterion that the FDR p-values < 0.05. Pathway enrichment analyses of 
Unigenes were performed by making use of KEGG (Kyoto Encyclopedia of Genes and 
Genomes) database. 
 
Results 
RNA quality supervision 
RNA quality supervisions were performed on Agilent 2100 Bioanalyzer. The results showed 
that the quality of total RNA has reached sequencing standard with sufficient amount and 
concentration, RIN (RNA integrity number) value greater than 7 and 28S:18S ratio greater 
than 1.5. The results of capillary electrophoresis showed that RNA samples had no 
degradation (Fig. 1). Sample 1, Sample 2, Sample 3 in Fig. 1(A) represent the total RNA from 
tung tree's seeds in June, August and October, respectively. Vertical axis and abscissa in Fig. 
1(B) indicate the UV absorption value and the nucleotide numbers of RNA electrophoretic 
bands, respectively. 
 

 
Fig. 1 The results of total RNA quality test for RNA-Seq experiment. (A) Capillary 

electrophoresis of the total RNA from tung tree's seeds at three different developmental stages. 
(B) UV absorption peaks of the total RNA bands in capillary electrophoresis.  

 
Statistics of transcriptome sequencing data 
Transcriptome sequencing of tung tree's seeds at three developmental stages (June, August 
and October corresponded to I, II and III stage, respectively) totally obtained 58439 non-
redundant Unigenes in which I, II and III stage possessed 61001, 54679 and 44495 Unigenes, 
respectively. Sequence length of these Unigenes mainly distributed around 200-3000 
nucleotides (Fig. 2). There were 1749 Unigenes with sequence length more than 3000 
nucleotides accounting for 0.03 percent of total Unigenes. With the increase of the sequence 
length, the Unigene number was progressively decreasing without obvious discontinuity. 
These results indicate that transcriptome sequencing completed with high quality.  
All non-redundant Unigenes can be classified into three GO (gene ontology) categories 
including molecular function, cellular component and biological process (Fig. 3). Numbers 
(1-61) of abscissa in Fig. 3 represent GO terms of biological adhesion, biological regulation, 
carbon utilization, cell killing, cell proliferation, cellular component organization or 
biogenesis, cellular process, death, developmental process, establishment of localization, 
growth, immune system process, localization, locomotion, metabolic process, multi-organism 
process, multicellular organismal process, negative regulation of biological process, nitrogen 
utilization, pigmentation, positive regulation of biological process, regulation of biological 
process, reproduction, reproductive process, response to stimulus, rhythmic process, signaling, 
sulfur utilization, viral reproduction, cell, cell junction, cell part, extracellular matrix, 
extracellular matrix part, extracellular region, extracellular region part, macromolecular 
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complex, membrane, membrane part, membrane-enclosed lumen, organelle, organelle part, 
symplast, virion, virion part, antioxidant activity, binding, catalytic activity, channel regulator 
activity, electron carrier activity, enzyme regulator activity, metallochaperone activity, 
molecular transducer activity, nucleic acid binding transcription factor activity, nutrient 
reservoir activity, protein binding transcription factor activity, protein tag, receptor activity, 
structural molecule activity, translation regulator activity and transporter activity, respectively. 
Unigenes associated with two GO terms, catalytic activity and metabolic process, were 
significantly enriched maybe due to strong metabolism during seed development (Fig. 3). 
Pathway enrichment analysis classified all non-redundant Unigenes into 128 signal pathway. 
Metabolic pathway had the most number of Unigenes (4736) accounting for 21.4 percent of 
all Unigenes whereas betalain biosynthesis pathway had only one Unigene. 
 

 
Fig. 2 Length distribution of Unigene sequences 

 
 

 
Fig. 3 GO classification of Unigenes 

 
Expression analysis of critical genes in fatty acid biosynthesis 
during seed development 
After pairwise comparisons among three seed development stages, expression analysis 
showed that more and more Unigenes exhibited up-regulated trend along with the seed 
development whereas the numbers of down-regulated genes were much lower than  
up-regulated genes and their changes were irregular throughout three stages (Fig. 4). I, II and 
III period in Fig. 4 represent the periods of fruit development in June, August and October, 
respectively. Accounting for 0.24 percent of all non-redundant Unigenes, a total of  
54 Unigenes were enriched in fatty acid biosynthesis pathway. Fourteen homologous proteins 
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related to fatty acid synthesis were identified through aligning 54 Unigene sequences against 
KEGG database (Table 1). Some of the differentially expressed genes obtained from pairwise 
comparisons also can be enriched in fatty acid biosynthesis pathway after alignment against 
KEGG database (Fig. 5). The red rectangles in Fig. 5 indicate genes differentially expressed 
among pairwise comparisons of transcriptome. Functions and genes' expression levels of 
some critical enzymes in fatty acid biosynthesis will be especially described in the following 
paragraphs. 
 

 
Fig. 4 The numbers of differentially expressed genes at three different stages 

during the development of tung tree seeds  
 

 
Fig. 5 Diagram of fatty acid biosynthesis pathway 

 
Acetyl-CoA carboxylase 
Acetyl-CoA carboxylase (ACCase) catalyzes the original reaction through which acetyl-CoA 
is transformed into malonyl-CoA [20]. There are two types of ACCase, homomeric and 
heteromeric ACCase, existed in higher plants. Carboxylation reaction is catalyzed by 
heteromeric ACCase existed in higher plants' plastid [20]. Heteromeric ACCase consists of 
four subunits which are BCCP (biotin carboxyl carrier protein), BC (biotin carboxylase),  
α-CT (carboxyl transferase) and β-CT. accB also known as bccP (encoding BCCP) was 
consistently up-regulated whereas ACAC (encoding BC) and accD (encoding β-CT) were 
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down-regulated throughout the three tung tree seed development stages. The expression level 
of accA (encoding α-CT) first rose until II stage then gradually declined, moreover, its 
expression level at III stage was lower than at I stage (Table 1). 
 

Table 1. Differentially expressed genes in fatty acid biosynthesis obtained from pairwise 
comparisons of tung tree seeds' transcriptome at different developmental stages 

Comparative 
group 

KEGG 
orthology 

Gene 
name Protein definition Expression 

profile 
II vs I 

 
K00059 
K10782 

fabG 
FATA 

3-oxoacyl-ACP reductase 
fatty acyl-ACP thioesterase A 

Up-regulated 
Up-regulated 

 
 
 
 
 
 
 
 
 
 
 

III vs II 
 
 
 
 
 
 
 

III vs I 

K11262 
K01963 
K00208 
K01961 
K01962 
K01716 
K00645 
K09458 
K02160 
K02372 
K00648 
K00059 
K11262 
K02160 
K01962 
K01716 
K00648 
K01963 
K02372 
K00059 
K10782 
K11262 
K02160 
K01963 
K00208 
K01961 
K01962 
K01716 
K00645 
K10781 
K09458 

ACAC 
accD 
fabI 
accC 
accA 
fabA 
fabD 
fabF 

accB, bccP 
fabZ 
fabH 
fabG 

ACAC 
accB, bccP 

accA 
fabA 
fabH 
accD 
fabZ 
fabG 
FATA 
ACAC 

accB, bccP 
accD 
fabI 
accC 
accA 
fabA 
fabD 
FATB 
fabF 

acetyl-CoA carboxylase / biotin carboxylase 
acetyl-CoA carboxylase carboxyl transferase subunit beta 

enoyl-ACP reductase I 
acetyl-CoA carboxylase, biotin carboxylase subunit 

acetyl-CoA carboxylase carboxyl transferase subunit alpha 
β-hydroxyacyl-ACP dehydratase 

ACP S-malonyltransferase 
β-Ketoacyl-ACP synthase II 

acetyl-CoA carboxylase biotin carboxyl carrier protein 
β-hydroxyacyl-ACP dehydratases 
β-Ketoacyl-ACP synthase III 

3-oxoacyl-ACP reductase 
acetyl-CoA carboxylase / biotin carboxylase 

acetyl-CoA carboxylase biotin carboxyl carrier protein 
acetyl-CoA carboxylase carboxyl transferase subunit alpha 

β-hydroxyacyl-ACP dehydratase 
β-Ketoacyl-ACP synthase III 

acetyl-CoA carboxylase carboxyl transferase subunit beta 
β-hydroxyacyl-ACP dehydratases 

3-oxoacyl-ACP reductase 
fatty acyl-ACP thioesterase A 

acetyl-CoA carboxylase / biotin carboxylase 
acetyl-CoA carboxylase biotin carboxyl carrier protein 

acetyl-CoA carboxylase carboxyl transferase subunit beta 
enoyl-ACP reductase I 

acetyl-CoA carboxylase, biotin carboxylase subunit 
acetyl-CoA carboxylase carboxyl transferase subunit alpha 

β-hydroxyacyl-ACP dehydratase 
ACP S-malonyltransferase 

fatty acyl-ACP thioesterase B 
β-Ketoacyl-ACP synthase II 

Down-regulated 
Down-regulated 

Up-regulated 
Up-regulated 
Up-regulated 
Up-regulated 
Up-regulated 
Up-regulated 
Up-regulated 
Up-regulated 
Up-regulated 

Down-regulated 
Down-regulated 

Up-regulated 
Down-regulated 

Up-regulated 
Down-regulated 
Down-regulated 
Down-regulated 

Up-regulated 
Up-regulated 

Down-regulated 
Up-regulated 

Down-regulated 
Up-regulated 
Up-regulated 

Down-regulated 
Up-regulated 
Up-regulated 

Down-regulated 
Up-regulated 

 
 
ACP-malonyltransferase 
ACP-malonyltransferase catalyzes the reaction that malonyl-CoA transfer its malony to acyl-
carrier-protein (ACP) in order to form malonyl-ACP as the substrate of consequent 
condensation reaction [21]. fabD (encoding ACP-malonyltransferase) was up-regulated until 
II stage then remained unchanged to III stage during tung tree seed development (Table 1). 
 
β-Ketoacyl-ACP synthase 
Type II fatty acid synthesis pathway (FAS II) in plants is one of the two known fatty acid 
metabolic pathways in organism [22]. Three kinds of β-Ketoacyl-ACP synthase (KAS) (KAS 
I, II and III) in plants corresponded to their bacterial counterpart (fabB, fabF and fabH) 
function in FAS II. KAS III catalyzes the condensation reaction between acetyl-ACP and 
malonyl-ACP whereas KAS I and KAS II catalyze the condensation reaction that leads to the 
extension of acyl chain [23]. During seed development, KAS II was strongly induced until  
II stage then remained unchanged to III stage. KAS III first exhibited up-regulated expression 
profile until II stage then began decreasing the expression level and restored it to the level at  
I stage (Table 1). KAS I showed no detectable expression changes throughout three stages. 
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β-Ketoacyl-ACP reductase 
β-Ketoacyl-ACP reductase can transform β-Ketoacyl-ACP to produce β-hydroxyacyl-ACP 
through reducing action in the presence of NADPH [24]. The expression level of fabG 
(encoding β-Ketoacyl-ACP reductase) was first strongly induced until II stage then gradually 
decreased, nevertheless, it still higher than the level at I stage (Table 1). 
 
β-hydroxyacyl-ACP dehydratase 
β-hydroxyacyl-ACP dehydratase catalyzes β-hydroxyacyl-ACP to dehydrate one H2O 
molecule to generate enoyl-ACP [25]. The expression level of fabA (encoding β-hydroxyacyl-
ACP dehydratase) was consistently up-regulated throughout three seed development stages 
(Table 1). 
 
Enoyl-ACP reductase 
Enoyl-ACP reductase transforms enoyl-ACP into acyl-ACP in the presence of NADPH, 
which is the last step of first cycle in fatty acid biosynthesis [26]. The expression level of fabI 
(encoding enoyl-ACP reductase) was up-regulated until II stage then remained unchanged to 
III stage (Table 1). 
 
Fatty acyl-ACP thioesterase 
Fatty acyl-ACP thioesterase catalyzes dissociation of acyl chain from ACP while the acyl 
chain extends to specific length after a series of cyclic reactions [27, 28]. The expression level 
of FATA (encoding Fatty acyl-ACP thioesterase) was up-regulated until II stage then 
remained unchanged to III stage (Table 1). 
 
Discussion 
ACCase which catalyzes transformation of acetyl-CoA into malonyl-CoA is the rate-limiting 
enzyme of de novo fatty acid synthesis [29]. ACCase consists of four subunits (BCCP, BC,  
α-CT and β-CT) which are encoded by accB, ACAC, accA and accD, respectively.  
The expression profiles of these four genes were not exactly the same. These results imply 
that the content of four subunits of ACCase protein in vivo is different. ACP has no enzyme 
activity and functions as a carrier in fatty acid biosynthesis. acpP encoding ACP had no 
detectable changes of expression level during seed development. This phenomenon might be 
the result of the massive ACP accumulation caused by negative feedback regulation of fatty 
acid biosynthesis [30]. The expression level of all critical enzyme genes exhibited up-
regulated profiles between I and II stage of seed development. However, up-regulated, down-
regulated and unchanged expression levels of these genes were observed between II and III 
stages but all of these expression levels at III stage were not lower than their counterpart at I 
stage. These results indicate that there is a positive correlation between massive accumulation 
of oil and expression level of critical genes in fatty acid biosynthesis. There are few 
researches on the expression profiles of genes in fatty acid biosynthesis so lots of hard works 
in future will be done to elucidate the molecular mechanism of fatty acid biosynthesis. 
 
Conclusion 
This research analyzed the transcriptome of tung tree's seeds in different development stages 
through RNA-Seq technology. Genes differentially expressed among three different 
development stages were classified into and enriched in related GO categories and metabolic 
pathways, respectively. Moreover, the results supplied preliminary elucidation of the 
functions and expression profiles of critical genes in fatty acid biosynthesis. This research 
provides necessary database which will be used to elucidate the molecular mechanism of fatty 
acid biosynthesis of plants in future. Furthermore, tung tree will probably increase the 
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production of tung oil if plant breeders apply the achievements in this research to tung tree's 
breeding. 
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