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Abstract: Mathematical modeling of ageing is built in this paper around research and 
development activities in cooperation with pharmaceutical companies and hospitals.  
The interaction of “dirty data” with appropriate mathematical techniques is exemplified 
mainly with applications to health technologies in endocrinology and oncology. The 
emphasis is more on old techniques in new situations than on new techniques, though there 
are references to some novel approaches to modeling. 
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Introduction 
Ageing populations are a problem for many developed countries this century, both in terms of 
numbers of “baby boomers” at an economic level and how to help citizens at an individual 
level [1]. In considering the mathematics of human biology, particularly in relation to ageing, 
there are two sets of non-communicable diseases which cannot be ignored because they are 
linked to so many other ailments. These are diabetes mellitus and cancer. Aspects of both are 
outlined in this paper.  
 
In a clinical sense, as far as we know, these diseases are unrelated. In the context of this 
paper, their connections are: 

• genetically: a cocktail of genes can predispose people to these diseases, together with 
• environmentally: aspects of their symptoms and rate of development can be related to 

life-style,  
• through associated factors in the postulated “Metabolic Syndrome X”, and 
• mathematically: neural nets and generalized nets have been used by us in modeling 

both diseases. 
 
Neither disease is a single entity even at the macro level which is what we shall be 
considering here. Both provide ample scope for the application of mathematics to medicine, 
because once one is beyond the basic biochemistry one is into almost the whole of medicine. 
Moreover, their high incidence correlates well with shifts to the sedentary lifestyles of modern 
life, a double burden for many parts of the developing world which already suffer from a high 
prevalence of infectious diseases [2]. 

                                                            

†An abbreviated version of an invited paper at a London Mathematical Society Conference, Northumberland 
University, Newcastle-upon-Tyne, UK, 6-8 June, 2012. 
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Both diseases are replete with dirty data which challenge the medico, the mathematician and 
the engineer who implements health technology. Not that the mathematical techniques used 
are necessarily very advanced. The trick is to find what is appropriate for the clinical data in a 
given situation. Then just as progress seems to be within our grasp new refinements and 
analyses provide new challenges. 
 
Thus a few years ago when diabetes mellitus (DM) seemed to be understood as two different 
diseases (Type 1 DM (T1DM) and Type 2 DM (T2DM)) with similar symptoms, 
epidemiologists began to get new doubts [3]. Now endocrinologists are getting to grips with a 
number of manifestations of DM, particularly T1.5DM or LADA (Latent Autoimmune 
Disease in Adults) [4] which is leading to reviews of previous diagnoses [5]. 
 

  1. INTRODUCTION: 
• OVERVIEW 
• CONNECTIONS 

  

  ⇓   
2. DIABETES: 

• T1DM 
• T2DM 

⇔ 4. MATHEMATICS:
• NEURAL &  
• GENERAL NETS  

⇔ 3. CANCER: 
• DENDRONES 
• BREAST BORDERS

  ⇓   
  5. CONCLUSION: 

• MODELING & EVIDENCE
• DECISIONS & EVIDENCE 

  

 

Fig. 1 Plan of paper 
 
Diabetes mellitus 
The two key chemicals in the constant endeavour of the body to produce energy are glucose 
and insulin. The hormone insulin facilitates the entry of glucose into cells for conversion into 
energy. Diabetes can be a result of the impairment of the ability of the body to obtain the 
energy it needs to function properly. 
 
T1DM is the name given to that form of the disease where the endogenous production of the 
insulin in the pancreas is eliminated. Insulin from an external source needs to be provided, 
usually by subcutaneous (SC) injection [6]. 
 
In the case of T2DM it is usually the quantity or efficacy of insulin that is affected, but there 
is still secretion of insulin from the pancreas. This form of the disease is usually treated with a 
combination of diet, exercise and oral agents, though sometimes insulin treatment is also 
required, especially if it is really LADA (Fig. 2). 
 
Essentially, the two forms of diabetes are different diseases with similar symptoms. In both 
cases, diabetes mellitus is a chronic state of excessive concentration of glucose in the blood. 
The major regulator of glucose concentration in the blood is insulin, a hormone synthesized 
and secreted by the beta cells of the islets of Langerhans in the pancreas. High blood sugar 
levels may be due to a lack of insulin and/or to excess of factors that oppose its action and 
cause insulin resistance. 
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Fig. 2 Aspects of diabetes discussed in the paper 
Legend: 

• IDDM: Insulin Dependent Diabetes Mellitus (DM1) 
• LADA: Latent Auto-immune Disease of Adults (DM1.5) 
• NIDDM: Non-insulin Dependent Diabetes Mellitus (DM2) 
• GDM: Gestational Diabetes Mellitus 

 
This imbalance can lead to abnormalities of carbohydrate, protein and lipid metabolism.  
The major complications of diabetes include characteristic symptoms, the progressive 
development of disease of the capillaries of the kidney and retina, damage to the peripheral 
nerves, and accelerated arteriosclerosis [7]. There are identifiable stages in the onset of DM2, 
impaired glucose tolerance and insulin resistance being two of them [8]. 
 
Owens [9] presents a historical summary of the disease, and Bliss [10] relates the human 
drama and scientific enterprise behind the discovery of insulin: “glory enough for all!”.  
We shall focus initially on plasma measurements. 
 
Subcutaneous insulin absorption rates in T1DM 
The mathematical modelling of subcutaneous insulin clearance and prehepatic insulin 
secretion is clinically very useful for several reasons. The process itself is quite complicated 
and the modeling permits us to focus on the salient features. The process is affected by such 
factors as insulin concentration, the half-life of the insulin, the site, method and type of 
injection [11]. Knowledge of insulin kinetics also has uses in the study of pre-diabetes [12] 
and diabetic complications [13, 14], as well as in such therapeutic innovations as pumps [15], 
jet injectors [16] and bio-synthetic human insulins [17, 18]. 
 
Insulin absorption rates are altered in the diabetic state [19] and this affects the relation 
between insulin absorption and the resulting plasma insulin concentration [20].  
Insulin absorption can be determined experimentally by labeling the insulin with a radioactive 
tracer such as I125, and then injecting the labeled preparation subcutaneously; the 
disappearance of radioactivity from the injection site can then be measured. 

PLASMA 
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Fig. 3 Compartment model for insulin absorption  
after a SC injection for patients with T2DM 

 
The amount of radioactivity remaining at the injection site can then be plotted against time to 
obtain a characteristic curve for each type of insulin which is useful for the physician in 
planning a regimen of insulin doses and types for individual patients. Studies have shown that 
I125 insulin injected subcutaneously is not normally degraded at the insulin site. It can 
therefore be assumed that the disappearance of radioactive labeled insulin from the injection 
site parallels the absorption of the insulin [21].  
 
A theoretical model was postulated with a two-compartment (pool) [22] as schematically 
represented in Fig. 3. A single pool was envisaged for the SC distribution of insulin following 
an injection (bolus) of S international units. It is acknowledged that this is an 
oversimplification of the biological process since it assumes that all SC insulin is immediately 
available for transcapillary absorption. The model than assumes a fractional rate of systemic 
delivery ksp and a degradation rate constant kd from the SC pool. The plasma pool represents 
the plasma distribution volume with kc as the metabolic clearance rate. 
 
The mathematical equations which represent the theoretical model are then 
 

xkxktS
dt
dx

spd −−= )(δ  (1) 

 
and 
 

ykxk
dt
dy

csp −=  (2) 

 
where x and y are the amounts of SC insulin in pools 1 and 2 respectively, and )(tδ  is defined 
by 
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The next step is to do something about the parameters. Observation of the appearance of 
insulin in the plasma shows a rising curve initially [23]. This suggests that insulin is delivered 
to the plasma pool as 
 

)0( >∝ aty a  or 
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Eq. (2) then becomes 
 

.yk
t

ay
dt
dy

c−=  (3) 

 
While aware of the danger of becoming slaves to a model, there subsequently seemed to be an 
experimental justification for these assumptions. Disappearance from the SC site is found 
from 
 

( )d sp
dx k k x kx
dt

= − + = −  or 

 
ktexx −= 0  (4) 

 
which can be readily linearized. Appearance in the plasma (or clearance from the injection 
site) is found from Eq. (3), which can be rewritten as 
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From Eq. (5) we have that 
 

1
0 0

c ck t k ta a
c

dy ay t e k y t e
dt

− −−= −  

 
the former term on the right hand side of the last equation being the non-degraded clearance 
rate from the SC site and the latter term being the clearance rate from the plasma pool. 
 
External disappearance of I125 labelled human soluble insulin (U100) with simultaneous 
measurement plasma immunoreactive insulin, C-peptide and glucose was used to study this 
insulin absorption. To assess the relationship between insulin absorption and subcutaneous 
blood flow the latter was measured by the disappearance of 99M technetium. 
 
Initial studies consisted of five normal subjects studied on four occasions. On the first three 
study days insulin absorption was measured from the anterior abdominal wall with 
simultaneous measurement of subcutaneous blood flow from an injection site adjacent to the 
insulin injection site. The measurement of SC blood flow from this latter site was compared to 
a simultaneous injection of technetium on the opposite side of the abdominal wall.  
On the fourth study day subjects received only insulin. Each study day commenced with three 
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basal blood samples at -60, -30 and 0 minutes. The six international units of labeled insulin 
were injected at time 0 minutes, and thereafter blood samples were obtained at 10 minute 
intervals for the first hour, every 15 minutes for the second hour, and subsequently every half 
hour until 6 hours after the injection. External disappearance of the insulin and technetium 
was measured continuously for the first 2 hours and thereafter for 5 minutes at the time of 
blood sampling. 
 
Six DM subjects were then subjected to the same regime. Their disappearance results are 
displayed in Table 1, which tabulates the percentage residual activity of the technetium 
injected adjacent to the insulin injection site over the first 8 minutes. 
 

Table 1. Measured percentage residual radioactivity for 6 subjects during first 8 minutes 
Time 
(min) 

Subjects 
1 2 3 4 5 6 

0 100.000 100.000 100.000 100.000 100.000 100.000 
1 88.761 89.885 94.262 87.759 92.457 88.265 
2 81.613 83.968 85.551 79.320 87.215 78.606 
3 72.272 79.510 77.392 71.445 82.852 71.069 
4 66.100 72.955 69.424 64.936 78.705 65.968 
5 60.142 66.077 64.273 58.378 74.840 60.170 
6 53.720 61.891 58.582 52.023 70.523 54.035 
7 50.226 59.103 52.886 48.126 66.183 50.549 
8 44.617 54.725 47.480 44.693 64.275 45.605 

 
Table 2. Calculated percentage residual radioactivity for 6 subjects during first 8 minutes  

and the resulting parameter values – fitted to Eq. (4) 
Time 
(min) 

Subjects 
1 2 3 4 5 6 

0 98.755 98.125 102.233 97.617 98.259 96.731 
1 89.422 91.089 93.036 88.226 93.004 87.992 
2 80.971 84.558 84.666 79.738 88.031 79.916 
3 73.319 78.494 77.049 72.066 83.323 72.638 
4 66.389 72.866 70.117 65.133 78.868 66.023 
5 60.115 67.641 63.809 58.867 74.650 60.011 
6 54.434 62.791 58.068 53.203 70.658 54.546 
7 49.289 58.289 52.844 48.085 66.880 49.579 
8 44.631 54.109 48.090 43.459 63.303 45.064 
       
0x  0.988 0.981 1.022 0.976 0.983 0.970 

k 0.099 0.074 0.094 0.101 0.055 0.096 
2r  0.998 0.995 0.998 0.997 0.966 0.966 

 
Some “appearance” results are set out in Table 3. They show the six subjects’ plasma insulin 
concentration (nmol/l) corresponding to the time vector (min) in the left-most column.  
Thus the ratio of appearance (A) to disappearance (D) has the form 
 

a btA kt e
D

−=  (6) 

 



  INT. J. BIOAUTOMATION, 2013, 17(3), 125-150 
 

131 
 

which can also be linearized so that multiple linear regression analysis can be used to fit the 
data. 
 

Table 3. Measured plasma insulin concentration (nmol/l) 
Time 
(min) 

Subjects 
1 2 3 4 5 6 

-60 0.042 0.072 0.030 0.036 0.024 0.024 
-30 0.030 0.084 0.030 0.024 0.024 0.024 
0 0.030 0.060 0.030 0.018 0.030 0.024 
10 0.066 0.054 0.048 0.030 0.030 0.030 
20 0.120 0.072 0.078 0.042 0.036 0.072 
30 0.144 0.108 0.090 0.072 0.048 0.060 
40 0.126 0.114 0.090 0.090 0.042 0.090 
50 0.150 0.150 0.102 0.090 0.054 0.108 
60 0.150 0.120 0.096 0.072 0.054 0.114 
75 0.150 0.108 0.072 0.102 0.060 0.102 
90 0.132 0.102 0.090 0.102 0.042 0.084 
105 0.138 0.096 0.090 0.096 0.054 0.078 
120 0.132 0.078 0.090 0.108 0.048 0.078 
150 0.114 0.096 0.084 0.090 0.054 0.096 
180 0.108 0.102 0.078 0.066 0.036 0.066 
210 0.072 0.090 0.054 0.090 0.030 0.054 
240 0.054 0.060 0.066 0.054 0.024 0.048 
270 0.048 0.054 0.072 0.054 0.030 0.060 
300 0.036 0.048 0.048 0.042 0.024 0.036 
330 0.024 0.042 0.030 0.042 0.018 0.024 
360 0.030 0.030 0.024 0.042 0.030 0.024 

 
The curvilinear relationship (6) was then fitted and the resulting parameters are listed  
in Table 4. 
 
Prehepatic insulin secretion rates in T2DM 
By utilizing the experimental facts that insulin and connecting peptide (C-peptide) are 
secreted in equimolar amounts from the pancreas [24] and that the C-peptide is not stored in 
the liver, a non-invasive method of estimating the pre-liver insulin secretion rate was 
developed [25]. The basic assumption was that there is an “instantaneous” surge of insulin in 
response to a glucose challenge. In a global sense this is reasonable, though a detailed analysis 
of insulin concentration profiles sometimes shows a bi-modal, and even occasionally a  
tri-modal, response curve if the time intervals of measurement are close enough. Previous 
models have required a guess for the initial value, and this can lead to ill-conditioning 
problems with multimodal response curves. 
 
It was a conscious decision to opt for the simplest scenario as the starting point for the 
development of the differential equation, and in most cases it turned out to be an 
exceptionally good fit, as measured by the coefficient of determination.  
 
The only other assumption was that the rate of clearance of the insulin from the plasma was 
proportional to the concentration of insulin present in the plasma, a reasonable assumption in 
the absence of evidence to the contrary and in the light of the results stated later where the 
insulin kinetics were traced with radioactive markers. We can then use C-peptide levels to 
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estimate insulin secretion as schematically represented in Fig. 4. This approach was adopted 
in Cobelli [26] and Vølund [27]. 

 
Table 4. Calculated plasma insulin concentration (nmol/l)  

and appearance/disappearance parameters 
Time 
(min) 

Subjects 
1 2 3 4 5 6 

0 2.104 2.118 2.521 2.561 2.820 2.453 
10 0.406 0.313 0.299 0.269 0.196 0.291 
20 0.274 0.203 0.186 0.164 0.109 0.180 
30 0.217 0.159 0.142 0.125 0.079 0.137 
40 0.183 0.134 0.118 0.104 0.063 0.113 
50 0.160 0.118 0.102 0.091 0.054 0.098 
60 0.143 0.106 0.091 0.082 0.047 0.087 
75 0.124 0.094 0.080 0.073 0.041 0.076 
90 0.110 0.085 0.073 0.067 0.037 0.068 
105 0.099 0.079 0.067 0.063 0.034 0.063 
120 0.090 0.074 0.063 0.060 0.032 0.058 
150 0.076 0.066 0.057 0.056 0.029 0.052 
180 0.066 0.062 0.053 0.054 0.028 0.048 
210 0.058 0.058 0.050 0.053 0.027 0.045 
240 0.052 0.055 0.048 0.053 0.027 0.043 
270 0.047 0.054 0.047 0.054 0.028 0.041 
300 0.042 0.052 0.046 0.056 0.028 0.040 
330 0.038 0.051 0.046 0.058 0.029 0.039 
360 0.035 0.050 0.046 0.060 0.030 0.038 

       

k 0.380 0.324 0.404 0.434 0.427 0.433 
a -0.545 -0.646 -0.718 -0.763 -0.903 -0.716 
b -0.098 -0.076 -0.096 -0.105 -0.059 -0.097 

2r  0.989 0.986 0.987 0.987 0.958 0.985 
 
The main purpose of this part of the study was to determine whether as fasting plasma glucose 
levels increased the insulin secretion rate decreased in response to a carbohydrate challenge 
and also whether obese subjects had a lower insulin secretion rate than non-obese subjects. 
 
Suppose R(t) is the rate of secretion from the pancreas into the portal vein of both the insulin 
and the C-peptide in Fig. 4, and (1 – F) is the unknown fractional uptake of insulin by the 
liver. To accommodate the initial response by the pancreas to a glucose load, we assumed the 
rate of secretion of each peptide is directly proportional to the concentration in the plasma and 
inversely proportional to time with respective coefficients of proportionality aI and aC.  
This is a pragmatic assumption based on experimental observations of results where the 
glucose challenge is derived from oral glucose tolerance tests (OGTT) and meal tolerance 
tests (MTT): 
 

.
t
C

dt
dC

∝  
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Fig. 4 Compartment model of peptide secretion for T2DM 
 
This assumption was originally prompted by work on the two-pool model for insulin 
secretion. In this, one pool is conceived as a small compartment available for rapid insulin 
release, and the other for sustained insulin release [28]. Beyond that the use of the assumption 
leads to consistent results as we shall see. In any case, the hypothesized multiphasic close 
temporal associations between pulses of insulin secretion and blood glucose levels are the 
object of considerable debate [29]. 
 
We seek ./)( dtdCtR =  The C-peptide kinetics can then be described by the first order 
differential equation 
 

Cb
t
Ca

dt
dC

CC −=  (7) 

 
a solution of which is 
 

tba CC eAtCC −+= 0  (8) 
 
in which A is a scaling factor. 
 
If we differentiate Eq. (8) we obtain 
 

tba
C

tba
C

CCCC etAbetAa
dt
dC −−− −= 1  (9) 

 
which is consistent with Eq. (6) as we would expect. The first term on the right hand side of 
Eq. (9) is the secretion term and the second term is the clearance term. 
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In the following experimental studies all subjects were given an MTT after a 10 hour 
overnight fast. The meal used is summarized in Table 5. The subjects were allowed  
10 minutes to consume the meal. 
 

Table 5. Composition of MTT [30] (A: Made up to 200 ml volume with water) 
     Total  Starch+  
 Amt Energy Protein Fat CHO Sugars dextrins Diet 

Food  (g) (kcal) (g) (g) (g) (g) (g) fibre 
Weetbix 15 51.0 1.71 0.51 10.55 0.92 9.98 1.90 
Skimmed 
milk powdera 

10 35.5 3.64 0.13 5.28 5.28 0 0 

Pineapple 
juice 

250 132.5 1.00 0.25 33.50 33.50 Trace 0 

White meat 
chicken 

50 71.0 13.25 2.00 0 0 0 0 

Hovis bread 60 136.8 5.82 1.32 27.06 1.44 25.62 2.70 
Butter 9 66.6 0.04 7.38 Trace Trace 0 0 
Totals  493.4 25.46 11.59 76.39 41.14 35.60 4.60 
%Calories  100 20 20 60    

 
As a pilot study we investigated 11 T2DM subjects and 7 non-diabetic subjects. The slope is 
from y0 to ymax when the clearance action is first perceived. After the overnight fast, the 
subjects were admitted to a metabolic unit, where they remained on bed rest throughout the 
study; smoking was not permitted. Mixed venous blood samples were taken from a forearm 
vein at 08.30 h and immediately prior to the administration of the MTT at 09.00 h, and then at 
30 minute intervals for 4 hours. 
 
The C-peptide data were then fitted using multiple linear regression of Y on x and t. Table 6 
shows the values of the parameters for the 11 diabetic and 7 non-diabetic subjects in the pilot 
study following the MTT.  
 
The average results are shown in Table 7 following this MTT. The most obvious difference 
between the two groups is, not surprisingly, in the slope, though this is really a side-issue in 
the present study, particularly in the pilot study. However, it does illustrate that the model 
picks up the sharper response of the non-diabetic subjects to the glucose load. 
 
As an example of the goodness-of-fit, the measured (m) and the calculated (c) C-peptide 
levels for the T2DM subjects 1 and 6 are shown in Table 8. A statistical analysis of the issues 
in goodness-of-fit is discussed in some detail in [31]. 
 
The pilot study was carried out at the Prince of Wales Hospital in Sydney, Australia.  
The main study, which followed, was performed at the University Hospital in Cardiff, Wales, 
after the model was discussed with researchers from the Radcliffe Infirmary in Oxford, 
England, where Marie Shannon, who had brittle T1DM, was a patient. In this study there 
were 235 T2DM patients. All patients had normal kidney and liver function tests, though as 
an indication of glycaemic control the glycosylated haemoglobin (HbA1) concentration of the 
patients varied from 6.7 to 19.3% (mean 11.6, SD 2.5%). (For comparison, a normal range is 
5.5-7.8%). The DM subjects were also sub-divided into three subgroups labelled, “mild”, 
“moderate” and “severe”. For other later clinical work too, as well as to test the model, the 
patients were also divided into obese and non-obese subgroups according to body mass index 
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(BMI = body mass/height2). It was used because it partly accounts for the distribution of the 
body mass. A BMI < 26.5 kg/m2 was considered as non-obese here. In addition, 56 normal 
subjects of similar age range and no family history of DM were studied. 
 

Table 6. Individual subjects in pilot study 
T2DMs a b r2 slope 

1 1.412 0.008 0.94 0.001 
2 8.027 0.075 0.92 0.001 
3 2.523 0.021 0.93 0.001 
4 2.080 0.026 0.93 0.001 
5 1.789 0.024 0.73 0.009 
6 4.711 0.105 0.60 0.004 
7 8.770 0.067 0.82 0.014 
8 8.630 0.086 0.87 0.002 
9 9.104 0.089 0.89 0.004 
10 3.519 0.036 0.94 0.007 
11 2.395 0.026 0.95 0.006 

Non-DMs a b r2 slope 
1 1.590 0.024 0.78 0.014 
2 3.210 0.058 0.98 0.026 
3 3.791 0.047 0.94 0.019 
4 2.561 0.032 0.90 0.020 
5 11.533 0.120 0.91 0.061 
6 1.938 0.118 0.95 0.024 
7 3.780 0.045 0.96 0.022 

 
Table 7. Pilot study parameters for Eq. (7) 

Subjects N Ca  Cb  2r  slope 
T2DM 11 4.815 0.052 0.87 0.005 

Non-DM 7 4.058 0.063 0.92 0.027 
 

 
Table 8. Comparisons at specific sampling times for T2DMs 1 and 6 

 time (min) 0 15 30 45 60 75 90 120 150 180 
#1 m 0.11 0.14 0.18 0.19 0.24 0.26 0.37 0.43 0.39 0.34
 c 0.11 0.14 0.17 0.21 0.25 0.27 0.30 0.33 0.35 0.36

#6 m 0.37 0.45 0.48 0.52 0.42 0.42 0.41 0.39 0.41 0.24
 c 0.37 0.39 0.39 0.38 0.37 0.37 0.37 0.37 0.37 0.37

 
Cancer 
In this section a simple means of determining the breast region from an image dendrogram is 
described. The goal is to improve the delineation in mammograms to improve their reading by 
radiologists and so reduce the error rates (both false-positives and false-negatives). 
 
A dendrogram is a combinatorial tree diagram to analyse the arrangements in hierarchical 
clustering. Essentially, the method here, which is an improvement on Mitchell [32], entails 
choosing one of the dendrones, or branches of the image dendrogram, and marking it as the 
breast area.  
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According to Hanusse [33], the hierarchical and automated fashion in which the image 
dendrogram is created, leads to a meaningful depiction of the semantic information that 
“explains” the image, and exhibits the objects it contains, along with their relationships.  
Thus, various observations can be seen from the structure of the dendronic representation of 
the image. In Fig. 5, an image and its corresponding dendrogram can be seen. 
 

 
Fig. 5 Mammogram (right) and corresponding dendrogram (left) 

 
In the image, our human vision system instantly recognizes that there are two main objects 
present: one lead marker that is relatively uniform, and the other, a breast that is comprised of 
other objects and tissues within it. A partial description of this can be seen in the dendrogram 
in which there are two main branches: one long “skinny” branch that corresponds to the lead 
marker, and another, “bushy” branch that corresponds to the breast. The latter is comprised of 
other sub-branches or objects, hence its “bushy” appearance. The effectiveness of the 
dendrogram enables us to discriminate between branches or objects in the image.  
 
Utilizing the dendrogram as a structural description of the image, both the breast and lead 
marker branches can be found. Once they are found, all other extraneous objects can be 
discarded, as they represent only noise or other unwanted artefacts in the background.  
Given the breast branch of the dendrogram, the border can be shown, and the region in which 
to search for cancer is therefore also known. This is the first stage in the analysis of the 
created dendrogram. 
 
In detecting the breast and lead marker branches within the dendrogram, two values are tested 
for the branches within it. Using these two values, coined here as Dendrone Slenderness Ratio 
and Border Gradient, a scheme utilizing simple thresholds has been developed to discriminate 
between the breast and lead marker branches from the dendrogram, and thus their 
corresponding regions within the image. 
 
Dendrone Slenderness Ratio 
Consider the two dendrones in Fig. 6 where it can be seen that the first dendrone (a) depicts 
one main branch, or object, and appears to be rather “skinny”. The other dendrone (b) consists 
of one gross object containing two sub-objects, and appears to be more “bushy”. 
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 a) b) 

Fig. 6 Two examples of dendrones: a “skinny” one (a), and a “bushy” one (b) 
 
The description of these dendrones is similar to that of the description of a lead marker 
dendrone and a breast dendrone, respectively. One way in which this description can be 
interpreted by the dendrone is its value of the Slenderness Ratio. The Slenderness Ratio gives 
the value of how “skinny” a branch is. A branch that is one persistent branch has a value of 1, 
and more “bushy” branches have a value less than unity. The Slenderness Ratio is defined 
numerically by: 
 

max

c

LSR
N

=  

 
in which Lmax = maximum length of the dendrome and Nc = total number of clusters in the 
dendrome. For the dendrones in Fig. 6, both have a maximum length of 9 and total numbers 
of clusters are 10 and 18 respectively. This gives the “skinny” dendrone (a) a Slenderness 
Ratio of 0.9, while the “bushy” dendrone (b) has a Slenderness Ratio of 0.5. 
 
It was found that dendrone branches representing the breast regions of the image had very low 
values for Slenderness Ratio. Likewise, dendrones which correspond to the uniform lead 
marker in the images had very high Slenderness Ratios. In the search for the breast and lead 
marker dendrones, the thresholds of Slenderness Ratio used in their detection were found to 
be 0.4 and 0.7, respectively. 
 
Thus, the image dendrogram could be very quickly searched, from the lowest level first, to 
see which branches corresponded to breast or lead marker Slenderness Ratios. While the 
Slenderness Ratio alone gave the correct branches for the breast and marker in the images,  
it was not sufficient in selecting the optimum cluster. Thus, another discriminator was needed. 
Initially, shape descriptors such as elongation and area ratio were used as this supplement. 
Subsequently, however, one single descriptor, average Border Gradient was found to be faster 
and more effective as an extra descriptor. 
 
Average Border Gradient 
Traditional image processing techniques used in object detection include Edge 
Enhancement/Detection. They are commonly implemented through spatial filters, such as 
Shift and Difference, Prewitt Gradient, Laplacian and Sobel operators. Their output produces 
borders based on gradients and can be used in subsequent image analysis operations for 
feature or object recognition. 
 
In the case for breast detection using the dendronic representation of the image, the process is 
somewhat reversed. The dendronic structure corresponds to the objects within the image, and 
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this implies that the borders of each of those objects are also known. Thus, the border of a 
given object can be tested to see if it corresponds to that of the type being detected. 
 
Accordingly, a modified border gradient operator has been devised and applied to the 
dendronic representations of the mammograms in order to obtain the average gradient along 
the border of each candidate breast or lead marker branch. As with other spatial pixel group 
operators, the modified gradientoperator relies on a marching template, but it does not operate 
on the whole image, rather just the pixels on the border of the object of interest. The template 
for the operation can be seen in Fig. 7. 

 
 
 

 A  X  B   

Fig. 7 Template for Border Gradient calculation 
 
Here, the pixel X is the pixel on the border between the object (colour green) and the 
surrounding area (colour grey). In order to obtain the average pixel gradient at pixel X, the 
following expression is evaluated: 
 

4
A B

X
I IG −

=  

 
in which IA and IB are the pixel intensities at A and B, respectively. 
 
Once the gradient at each border pixel is found, the average Border Gradient is calculated. 
This value is then used to evaluate if the branch in question is the breast branch or not. It was 
found that threshold values for the breast Border Gradient were much less than the threshold 
for the lead marker. This is to be expected, as the lead marker possesses a very well defined 
edge. A value of

 
 GX = 0.4 gave a suitable threshold for deciding whether or not the object in 

question was the breast region, while a value of GX = 1.0 gave a suitable threshold for 
deciding whether or not the object in question was the lead marker. 
 
It should be noted that this simple method only calculates the border gradient in one direction, 
along the horizontal. However, as a majority of the breast border is in a vertical direction, this 
simple method captures the gradient across the breast border well, and helps to discriminate it 
from other objects in a robust fashion. 
 
Breast border detection process 
In order to arrive at the threshold values for both the Slenderness Ratio and Border Gradient, 
four mammograms were chosen randomly from the full dataset. These comprised two 
craniocaudal and two mediolateral oblique mammograms. From these images, the threshold 
values required to identify the breast and marker dendrone were found. A factor was applied 
to the most marginal threshold values in order for them to be more universal. 
 
It is assumed that the breast region is of a higher intensity than that of the background.  
Thus, the dendrogram is scanned commencing with the cluster(s) in the lowest intensity level. 
In this way, the lowest intensity outer contour of the breast region will be found. Should the 
breast branch not be found in the first level or two, detection will continue for higher 
intensities, and breast contours of higher intensities would be found, these corresponding to 
smaller radius contours as the breast thickness rapidly increases [34]. 
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Fig. 8 Exaggerated breast border profile of intensity 

 
It is desirable, however, to stop detection when the lowest intensity border is encountered, as 
this represents the edge between the breast and the background. In Fig. 8, three contours in the 
vicinity of the breast border are depicted, each at a different intensity level. Three contours of 
the breast are shown in red at the bottom of the picture. The gradient of the border at each of 
the contours increases as the intensity increases. A cluster in the dendrogram will represent 
each of these contours. Starting with the lower intensity cluster, the border gradient is 
evaluated and if the Slenderness Ratio is less than 0.4 and the gradient is greater than 0.4, the 
cluster is labelled as the breast cluster. If not, the next intensity higher is tested.  
 
As can also be seen in Fig. 8, the gradient increases as the intensity increases, near the breast 
boundary. At some point close to the border, the gradient threshold will be overcome and the 
breast region will be detected. It has been identified that generation of false alarms, such as 
lead markers should be avoided so as to prevent the radiologist losing confidence in the 
algorithm’s performance. Therefore, whilst the breast border identification process is 
underway, the lead marker is also identified. Since Slenderness Ratio is calculated for the 
objects in the dendrogram, this does not produce a large overhead in performance. 
 
Identification of the marker did not seem necessary using the algorithm developed in the 
current research, as no marker objects were identified as masses. However, some cases do 
arise whereby the lead marker overlaps the breast region and may be included as such. 
Therefore, by identifying the lead marker, it may be excluded from the subsequent mass 
detection algorithm. In this way, the possibility of a future false alarm caused by detection of 
the marker as a malignant mass is removed. 
 
The effectiveness of the slenderness ratio, coupled with the average border gradient can be 
seen in Fig. 9. The use of a Slenderness ratio threshold alone has identified clusters 
representing the breast and marker – (a) and (c). However, it has not made ideal selections, as 
there exist background artefacts attached to the objects. By using a threshold on the average 
border gradient as well, the next appropriate clusters are selected, and they correspond to 
visually better object representations – (b) and (d). 
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Fig. 9 Breast and marker detection comparison: Using Slenderness Ration alone – 

(a) and (c) – using Slenderness Ratio as well as Average Border Gradient – (b) and (d). 
 
The breast border detection routine is summarized in the following sequence: 

 

For intensity levels (starting at the lowest intensity): 
For every cluster in the level: 

• Obtain the dendrone’s Slenderness Ratio 
• Get the border pixels of the object 
• Get the Average Border Gradient of the object 

If Slenderness Ratio < 0.4 AND Average Border Gradient > 0.4 
→ Cluster is the breast region 

If Slenderness Ratio > 0.7 AND Average Border Gradient > 1.0 
→ Cluster is the lead marker 

If breast region and lead marker have been found _Finish 
END 

END 
 
The test set used to evaluate these threshold values and thus the breast area detection 
performance, was the remaining 46 mammograms in the data base. The following figures 
(Figs. 10-13) display a variety of examples of detected lead marker and breast regions. In each 
sequence,  

a) shows the detected breast in green. Other objects in the image have been discarded, so 
that there are only the two detected objects present. 
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b) simply shows the detected breast border overlaid on the original image. The breast 
boundary is found simply from the interface between the green region and the 
background in (a).  

c) shows the original image with an overlaid tracing of the breast border by an expert 
radiologist, for comparison.  
 

 
 a) b) c) 

Fig. 10 ABULCC (ABU – patient code, then L: left, 
CC (cranio-caudal) view) border etection 

 

 
 a) b) c) 

Fig. 11 ABRRML (ABR – patient code, R: right, 
ML (mediolateral-oblique) view) border detection 

 
The Slenderness Ratio, while being a robust parameter in the detection of abreast branch, did 
not always select the optimum cluster in the branch to represent the breast region. Another 
parameter, the average Border Gradient, which is a pixel level feature of the border pixels of 
and object, was also utilized to refine the decision. In this way, detection of the breast and 
marker dendronic branches was achieved. 

 

 
 a) b) c) 

Fig. 12 ABWLCC (ABW – patient code, then L: left, 
CC (cranio-caudal) view) border etection 
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 a) b) c) 

Fig. 13 ADBRML (ADB – patient code, R: right, 
ML (mediolateral-oblique) view) border detection 

 
The breast detection method was found to produce a general border that agrees well with a 
visual inspection of the image. It is also robust to noise and other image artifacts that are of 
little relevance to the breast region itself. However, when compared to the radiologist’s border 
outline, it can be seen that the detection method does not agree precisely with the shape of the 
outlined breast. Two further examples of detected breast regions are shown in Fig. 14, 
together with the radiologist’s outlines. 
 

 
 a) b) 

Fig. 14 Two examples of detected breast regions.  
A typical example (a) and an example of a mismatch in shape (b). 

 
In Fig. 14(a), a typical detected breast region agrees fairly well with the radiologist’s 
outlining, but conversely in (b), the shape detected by the method disagrees with the 
radiologist’s outline. It is the authors’ opinion that the border detected by the algorithm is 
closer to the actual borderline of the skin. This assertion can be explained by the method by 
which the outlines were obtained; it is not to take away from the experience or expertise of the 
radiologist. Rather, the outlines were obtained with the use of a tablet personal computer.  
It takes some time to become accustomed to the nuances of the pointing device, particularly in 
accounting for the pen pressure required. Therefore even with an expert radiologist, the 
accuracy is dependent on the experience of the radiologist with the technology. 
 
Furthermore, for the display of the digital image being traced, no brightness and/or contrast 
controls were available, making the job of the radiologist even harder. Another factor to take 
into consideration is that the outlines should be continuous outlines, rather than broken 
segments. With the broken outlines of the radiologists as displayed in this research the exact 
accuracy of the border detection is difficult to quantify at this stage. 
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Moreover, the roughness of the curve does not correlate well with the smoothness of the real 
skin border. Other research in breast border detection provides methods for smoothing and 
obtaining border locations. However, the regions detected using this method envelop the 
breast area more than adequately for the detection of stellates within the breast. Further, as the 
complete stellate detection process is essentially automated, this method for breast detection 
provides a necessary robust framework for subsequent analysis. It is the automated and robust 
qualities of the dendronic analysis that are of significance.  
 
Other methods will be able to achieve the same breast border, and perhaps be slightly 
smoother and marginally more accurate, but they are subject to variability in image contrast 
and other image variables and may not obtain a very good border representation, whereas, the 
significance of the structure represented by the image dendrogram leads to the detection of the 
breast sub-structure extremely robustly. 
 
As the test set comprised the remaining, unseen images in the database, the percentage of 
images used to derive the threshold values was very low at only 8% of the total images.  
The database of 50 images used in this research was sourced from two large breast screening 
clinics in a major western city. Therefore, it is expected that the threshold values would apply 
to mammograms from a similar source and digitized on the same equipment. 
 
Should dendronic image analysis become combined with other mass detection algorithms in 
the future, a more accurate border detection method might be needed. In many mass detection 
algorithms, an accurate breast border detection method is required to avoid inaccurate results 
caused by kernels overlapping the background, for the analysis of architectural distortions or 
to warp corresponding images taken from other screenings of the same patient [35].  
In such cases, a pre-processing step might be implemented, or a more accurate edge detection 
integrated. The emphasis of the research presented here has been on the applicability of 
dendronic image analysis in the detection of stellates, and thus pre-processing has been 
omitted in order to evaluate the effectiveness of raw dendronic analysis alone. 
 
Mathematics 
In the work on diabetes in the last section and the work on cancer in the next section, 
extensive use has been made of generalized nets (GNs) in the former and neural nets in the 
latter.  
As an illustration of the lesser known GNs, we apply them to one aspect of the management 
of diabetes. GNs are generalizations of Petri and other nets, but their theoretical extensions 
enable GNs to be applied in a wide variety of applications [36]. This is because GNs can 
accommodate 

• the description of time parameters; 
• the logical constraints; 
• the capacities of the separate components, and 
• the history of the previous cycles of the model. 

 
This means, that like other nets, they are self-learning entities which can be utilized in a wide 
range of modelling since GNs are modified on the basis of the difference between expected 
and observed data in relation to certain fixed criteria. 
 
Briefly, a GN is an ordered four-tuple which is combinatorially a di-graph and which  

• contains a set of transitions (which, in turn, is described by a seven-tuple); 
• a function which prioritises the transitions; 



  INT. J. BIOAUTOMATION, 2013, 17(3), 125-150 
 

144 
 

• a function which prioritises the places within the GN; 
• a function which prioritises the capacities of the places; 
• a function which calculates the truth values of the predicates of the conditions in the 

transitions – this can utilize “intuitionstic fuzzy logic” [37]; 
• a function which calculates the next time-moment when a given transition can be 

activated; 
• a function which gives the duration of the activity of any transition; 
• a set of tokens which move around the net. 

 
Successful management of diabetes mellitus requires adequate control of blood glucose 
levels. Hypoglycaemia refers to the situation where there is less than the normal amount of 
glucose in the blood, usually caused by administration of too much insulin, excessive 
secretion of insulin by the islet cells of the pancreas or excessive exercise. Some unexplained 
hypos’ happen for no obvious reason and some occur without prior warning signals 
(asymptomatic). On the other hand, glucagon is a hormone produced in the alpha cells of 
pancreatic islets of Langerhans. It causes the breakdown of glycogen into glucose thus 
preventing blood sugar from falling too low in normal circumstance. Hence glucagon prevents 
hypoglycaemia by maintaining glucose production at a rate sufficient to meet the needs of the 
human body. A dangerous situation arises when a patient has a series of “hypos” without 
giving the liver a chance to replenish its supply of glycogen. 
 
However, among diabetic patients when uncontrolled insulin release has been reported 
(insulin shock), and if the release of glycogen from the liver is not sufficient to counteract the 
effect of the consequence of the insulin excess, hypoglycaemia will occur. The effect may 
vary from mild episodes, to severe and intractable hypoglycaemia leading to convulsions and 
even death in some cases. 
 
We develop a GN which is effectively a directed graph of Fig. 4 above. It is represented in 
Fig. 15 below.  
 
We let TIME represent the current-time-moment and for a token p, we denote by 0

px  and p
cux  

the initial and the current characteristics of the token p: 
• α -tokens enter places l1 with initial characteristics “receiving of signals by the 

pancreas to begin functioning”,  
• β -tokens enter place l4 with initial characteristics: “ bx0  = manufactured insulin;  

its quantity; the current time-moment”; and  
• γ -tokens enter place l9 with initial characteristic: “ cx0  = carbohydrate; its quantity;  

the food’s type; its quantity; the current time-moment + the necessary time for 
digestion”. 
 

Fig. 15 represents a GN model for diabetes mellitus. The forms of the GN-transitions are the 
following: 
 

{ } { }1 1 2 3 1 1, , , , ( )z l l l r l= ∧  

1r =  
 

2l  3l  

1l  true true 
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Fig. 15 GN Model for diabetes mellitus 

 
The tokens from place l2 receive the characteristic “insulin; its quantity; the current time-
moment”. The tokens from l3 receive the characteristic “C-peptide; its quantity; the current 
time-moment”. 

{ } { } ( )( )2 2 3 11 5 6 2 2 3 10, , , , , , , ,z l l l l l r l l l= ∨ ∧ ,  

2r =  
 

5l  6l  

2l  5,2W  6,2W  
 3l 5,3W  6,3W  
 l11 true true 

 
where 
• W2,5  = “plasma glucose levels are too low”; 
• W2,6  = “plasma glucose levels are too high”; 
• 3,5W = “ 3 1 1

aTIME pr x C− ≥ ”; 

• 3,6W = “ 3 1 2
aTIME pr x C− ≥ ”, 

in which C1 and C2 are insulin time administration constants: 1 25 , 15minC C≤ ≤  (which vary 
between different patients and within the same patient from day to day). 
 
The tokens from places l2 and l3 are united and then split again and enter the places l5 and l6 
according to their characteristics l5: activation of liver’s store of glycogen, and l6: insulin;  
its quantity; the current time-moment. 
 

{ } { } ( )3 4 7 3 4, , ,z l l r l= ∧ , 

3r =
 

7l  

4l  7,4W  
where 
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• 4,7W = “ 3 1 1
aTIME pr x C− ≥ ”. 

 
The tokens from place l7 receive the characteristic: “insulin; its quantity; the current time-
moment”.  

{ } { } ( )4 5 6 7 8 4 5 6 7, , , , , ( , ), ,z l l l l r l l l= ∨ ∧  

4r =
 

8l  

5l 8,5W  

6l 8,6W  

7l 8,7W  
 
where 
• =8,5W 6,8W = “ 3 3

a
cuTIME pr x C− ≥ ”, 

• 7,8W = “ 3 1 3
bTIME pr x C− ≥ ”, 

in which C3 is a constant for which 3010 3 ≤≤ C  min, with variations again between and 
within patients.  
 
In place l8 the α -tokens and β -tokens from place l6 and l7 respectively are united in one α -
token with the characteristic: “insulin; its quantity; glucose; its quantity; there is/there is not 
hypoglycaemia; the current time-moment”. 
 

{ } ( ){ }5 8 9 10 5 8 9, , }, , ,z l l l r l l= ∨ , 

5r =
 

10l  

8l true 

9l 10,9W  
where 
• 9,10W = “ 3 0 0cTIME pr x− ≥ ”. 
 
In place l10 the α -tokens and the γ -tokens from l8 and l9 respectively, are united in one  
α -token with the previous token’s characteristic (place l8 “insulin; its quantity; the current 
time-moment”). 

{ } { } ( )10613,1211106 ,,,,, lrllllz ∧= , 

6r =  
 

11l  12l  13l  

10l  11,10W  12,10W  13,10W  
 
where 
• 10,11W = “ 2 4

a
cupr x C≥ ” and “ 4 5

a
cupr x C≥ ”, 

• 10,12W = “ 2 4
a
cupr x C≥ ”, 

• 10,13W = “ 4 5
a
cupr x C≥ ”. 

 
The α -tokens from place l10  go to one of the places l11, l12 and l13, where they receive, 
respectively, the following characteristics:  
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• in place l11: “ 1 2 5; ;a a a
cu cu cupr x pr x pr x ”;  

• in place l12: “it is necessary to add insulin”; 
• in place l13: “it is necessary to add glucose”. 

 
More specific details may be found in Shannon et al. [38]. 
 
Health technologies related to this research include Intelligent Hand-held Terminals for 
dietary information [39], Insulin Dosage Meters [40], and HypoMon®, a device for detecting 
nocturnal hypoglycaemia [41]. 
 
Concluding comments 
There are other issues for the mathematician in medicine. Difference equations are often, but 
not always, useful in dealing with data measured at discrete time points [42, 43]. There are 
also temptations to use techniques more sophisticated than are warranted by the data or to 
utilize too much data, ignoring the many self-correcting mechanisms in the living body.  
 
This excursion through some aspects of these diseases has not had time to engage with 
controversies. For instance, is there really such a thing as “brittle” T1DM? are “impaired 
glucose tolerance” and “insulin resistance” recognizable defined stages in the onset of 
T2DM? What is the place of “insulin sensitivity”? 
 
There is also the difficulty in deciding what constitutes clinically compelling evidence; after 
all, not all human issues of life and death lend themselves to the scrutiny of Level 1 evidence: 
randomized, double-blind, cross-over trials [44]. 
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