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Abstract: Power and magnitude square coherence estimates evaluated for EEG of alcoholics 
and control participants were used to attempt an automated discrimination of individuals 
suffering alcohol dependence. The estimates were obtained for non-overlapping consecutive 
EEG fragments of 0.5 second duration with parametric analyzers and used as features for 
Euclidean, Fisher, and Regression-based classifiers. Implementing the leave-one-out cross-
validation technique, the highest unbiased classification accuracy, sensitivity of 66.45% and 
selectivity of 67.12%, was observed from the Regression-based classifier when θ-rhythm 
power estimates for all EEG electrodes were used as classification features. 
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Introduction 
Compared to other imaging techniques – such as magnetic resonance imaging (MRI), positron 
emission tomography (PET), and magnetoencephalography (MEG) – electroencephalography 
(EEG) offers superior temporal resolution (except for MEG) at a significantly lower cost. It 
may serve as a convenient and accurate tool for disease screenings within large populations. 
Quantitative analysis of the electroencephalogram (QEEG) has been extensively used in 
epilepsy research [3, 17, 18], in studies of various sleep disorders [26, 27], in Alzheimer 
disease research [10, 21], in studies of head injuries [4, 16, 25], etc. 
 
On the other hand, acute consumption of ethanol alcohol can be characterized by short-term 
effects on an individual; ranging from impaired judgment and coordination through increased 
aggressiveness to dizziness, nausea, stomach dysfunctions, etc. Prolonged heavy consumption 
of alcohol may lead to long-term (permanent) effects including: permanent damage to vital 
organs, high blood pressure, various types of cancer, nutritional deficiencies, epigenetic 
changes, impairment of memory and cognition, etc. Evidences suggest that both short-term 
and long-term effects of alcohol may produce detectable changes in subject’s 
electroencephalogram. 
 
Spectral analysis has revealed the following (short-term) effects of acute alcohol consumption 
on spontaneous EEG: an increase in the α-rhythm (8-12 Hz) power induced by moderate 
doses of alcohol [11]. More specifically, reports indicate significant increase in the power of 
α1-rhythm (8-10 Hz) due to alcohol administration [5]. Larger doses of alcohol may produce 
an increase in lower (i.e., below 8 Hz) EEG rhythms [14]. 
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The resting EEG of alcoholics has been characterized by an increased power in δ-rhythm  
(0-4 Hz) [13, 23], an increased power in θ-rhythm (4-8 Hz) [23], a reduced power in  
α-rhythm (8-12 Hz) [5, 14, 6, 7, 12, 15, 19], and an increased power in β-rhythm (12-30 Hz) 
[13, 19, 1, 8]. Moreover, similar changes were also observed in the EEG of offspring from 
alcoholics  
[6, 19]. Another report [1] suggests reduced power in δ- and θ-rhythms observed in 
alcoholics. Perhaps, this contradiction might be attributed to differences in data analysis. 
 
EEG processing techniques other than spectral analysis were also employed in alcohol-related 
studies. Applications of connectivity metrics showed reduced synchronization in α (8-12 Hz) 
and β1 (12-20 Hz) rhythms evidenced in the EEG of heavily drinking individuals (i.e., 21 
alcoholic drinks per week or more) compared to lightly drinking participants [2]. Bilateral, 
intra-hemispheric, and posterior coherence were found significantly higher in δ-rhythm [13] 
and in α- and β-rhythms in alcohol dependent participants [28]. On the other hand, Kaplan 
and coworkers reported decreased coherence for rhythms above δ being observed in 
alcoholics [13]. 
 
We have recently demonstrated that spectral and coherence estimates were generally lower for 
alcoholics than for controls while evaluated for low EEG rhythms. Kruskal-Wallis’s one-way 
analysis of variance indicated these alterations as statistically significant [24]. 
 
While utilizing the same EEG data and the results obtained in the previous study [24], the 
present project targets an automated classification between alcoholics and control individuals. 
The discrimination will be based on spectral and coherence metrics evaluated from their EEG 
and for the following rhythms: δ (1-4 Hz), θ (4-8 Hz), α1 (8-10 Hz), α2 (10-12 Hz),  
β1 (12-20 Hz), β2 (20-30 Hz), γ1 (30-40 Hz), and γ2 (60-50 Hz). 
 
Methods 
EEG data for this project were obtained from an open database and were originally donated by 
Dr. Henri Begleiter at Neurodynamics Laboratory, State University of New York Health 
Center, Brooklyn. The data have been collected from male alcoholic subjects of mean age 
35.83, standard deviation 5.33 and range 22.3-49.8 years, and from the male controls with 
mean age 25.81, standard deviation 3.38, and range of 19.4-38.6 years. EEG data were 
recorded from a set of 62 electrodes placed according to the extended 10/20 International 
montage; trails with excess of eye and body movement were excluded. These EEG data were 
used previously in alcohol-related studies [23, 24, 29, 30]. The “Cz” channel was excluded 
from present study since it was used as the recording reference. 
 
EEG processing 
Spectral and coherence estimates were obtained for consecutive 0.5 second-long EEG 
fragments using parametric techniques. The detailed description of EEG processing may be 
found elsewhere [24]. Therefore, two discrete data sets were used in the present project: 
Spectral and Coherence sets. Each set consists of two groups: Alcoholics and Controls. Within 
each set, the alcoholic group contains 17.953 samples for each EEG rhythm and EEG channel, 
while the control group inludes 10.575 samples. 
 
We have demonstrated previously that differences in EEG power and coherence between the 
alcoholics and non-alcoholics groups are statistically significant for selected EEG channels 
and rhythms [24]. The main objective of present work was to evaluate various classification 
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techniques aimed at an automated discrimination between alcoholics and non-alcoholics based 
on their EEG. Numerous techniques have been proposed for classification (or pattern 
recognition) over the past 50 years. One of such techniques, referred to as pattern matching, 
provides the exact match selected from the pre-existing matches. Another technique, pattern 
recognition, classifies input signals into one of the classes according to the pre-defined rules. 
Pattern recognition usually consists of two stages; feature extraction and pattern classification. 
During the feature extraction process, specific features are produced from a large number of 
available initial measurements by linear or non-linear transformation. The objective of the 
classification stage is to assign an n-dimensional features vector X to one of the classes using 
the selected algorithm. 
 
Present paper is aimed at evaluating performance of three pattern classification methods – 
Euclidean distance classifier, Fisher classifier, and Regression classifier – applied to the 
spectral and coherence estimates obtained for EEG of alcoholics and control subjects as 
described previously [24]. 
 
Euclidean distance classifier 
The unknown features vector X defined as follows 
 

T
1 2 ,( , , )nX x x x= …  (1) 

 
is classified into one of the Z classes according to the Euclidean distance to the means of these 
classes M1, M2 … MZ [20]. The Euclidean distance between the vectors X and Mr is evaluated 
as: 
 

T
, ( ) (

rX M r r rD X M X M X M= − = − − )

0
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In the case considered here, only two classes are assessed. M1 and M2 are the sample means of 
two classes of features evaluated for alcoholics and controls respectively. The discriminant 
function h(X) is evaluated next as follows: 
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If the sign of the discriminant function in (3) is negative, the vector X is assigned to the 
alcoholics group; otherwise, it is classified to the control group. 
 
Fisher classifier 
The Fisher classification procedure [20] is similar to the Euclidean Distance method except 
that the variance is considered also. Therefore, the discriminant function is: 
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where Xj is the j-th training set observation 
 
and 
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If the sign of the discriminant function (6) is negative, X is assigned to the class 1 (alcoholics); 
otherwise, it is associated with the class 2 (controls). 
 
Regression analysis 
In general, regression analysis establishes a functional relationship f between the input vector 
X, the weight vector β, and the output vector Y of the model. 
 

( ,Y f X )β=  (10) 
 
In present work, a locally weighted regression (LWR) model proposed by Godoy and 
colleagues [9] was implemented. The decision boundary was selected experimentally as 1.7 to 
yield high classification accuracy. The detailed description of the LWR algorithm can be 
found in [9]. 
 
Classifiers’ performance evaluation 
During the classifiers’ performance evaluation, the group of alcoholics was assumed as the 
“unusual class” and the control group was considered as the “normal class”. Therefore, the 
classification problem was reduced to the detection with the unusual class being positives and 
the normal class – negatives. Thus evaluating the classifier’s correct detections of an 
abnormal condition (True Positive) and the correct detections of a normal condition (True 
Negative), the classifier’s performance (i.e., percentage of correct classifications) may be 
described by the following descriptors [22]: 
 

100% True PositiveSensitivity
Total Abnormal

 
 = 

 
  (11) 

 

100% True NegativeSpecificity
Total Normal

 
 = 

 
  (12) 
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To evaluate the classifier performance, a leave-one-out cross-validation was implemented 
using MATLAB. The classification accuracy was estimated according to (11) and (12). 
 
Results 
Initially, all available EEG channels were used to evaluate the classification metrics (i.e., 
spectral or coherence estimates). The corresponding classification accuracies – sensitivity and 
specificity – are reported in Fig. 1 as functions of EEG rhythms and for three classifiers. 
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Fig. 1 Percentages of correct classifications (sensitivity and specificity)  
of Euclidean (EC), Fisher (FC), and Regression Classifiers (RC)  

using EEG Power (a) and Coherence (b) as the classification features 
 

As expected based on our previous results [24], classification performance varies when EEG 
power and coherence evaluated for different rhythms were used as classification features. It is 
also seen in Fig. 1 that Euclidean and Fisher classifiers show biased, towards one of the 
groups, discrimination results. This tendency can also be observed in the regression classifier 
when using the EEG rhythms from β1 to γ2. For the lower rhythms, on the other hand, its 
classification accuracy ranges from approximately 60% to approximately 70%, which is not 
sufficient for any practical use. Therefore, we conclude that, while the results produced by the 
regression classifier for low EEG rhythms are promising, no reliable detection of alcoholics 
was achieved yet when using power and coherence estimates for all available EEG channels 
and while implementing the above classifiers. 
 
When using Magnitude Square (MS) coherence estimates as the classification features, Fisher 
classifier assigned all subjects to the alcoholics group; therefore, the corresponding results 
were not included in Fig. 1(b). Perhaps, this bias may be explained considering that the Fisher 
classifier is optimal for Gaussian distribution of classification metrics. A histogram of MS 
coherence estimates is shown in Fig. 2. 
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Fig. 2 Histogram of the MS coherence estimates  

between C4 and Fp1 EEG electrodes and for θ-rhythm 
 

Since a histogram approximates the shape of the probability density function, we may 
conclude from Fig. 2 that MS coherence is certainly not normally distributed.  
As a consequence, Fisher discriminator may fail when using coherence estimates as 
classification features. We further hypothesize that Euclidean and Regression classifiers are 
more robust regarding the features’ distribution and, therefore, are more suitable for the MS 
coherence. 
 
A modified detection procedure was considered next. We observed previously that power and 
coherence estimates evaluated for specific EEG rhythms and for particular electrodes may 
show statistically significant differences between alcoholics and control groups [24]. 
Therefore, we hypothesize that various EEG electrodes may contribute to higher (or lower) 
classification accuracy within different rhythms. Thus, only the EEG channels, for which the 
corresponding metrics were deemed statistically different between two groups (electrode 
mask #1), were included in the classification next. The corresponding results for power and 
coherence are illustrated in the left panels of Fig. 3 and Fig. 4. 
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Fig. 3 Percentages of correct classifications (sensitivity and specificity)  
of EC, FC, and RC using EEG Power estimates for selected EEG channels  

(mask 1 – (a) and mask 2 – (b)) as the classification features 
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Fig. 4 Percentages of correct classifications (sensitivity and specificity)  
of EC, FC, and RC using EEG Coherence estimates for selected EEG channels  

(mask 1 – (a) and mask 2 – (b)) as the classification features 
 

For comparison, only the EEG channels contributing to the most different average power and 
coherence between the groups (electrode mask #2) were selected for classification as an 
alternative approach. The corresponding results are shown in the right panels of Fig. 3 and 
Fig. 4. 
 
As previously, Fisher classifier appeared biased towards one group when using coherence 
estimates as classification features. The corresponding results were excluded in Fig. 4. 
 
We further observe in Fig. 3 and Fig. 4 that, as previously, Euclidean and Fisher classifiers 
generally produced biased results. Comparing Fig. 1 and Fig. 3, Fig. 4, we conclude that 
judicious selection of EEG electrodes for the analysis does not contribute to increase in 
classification accuracy since both sensitivity and specificity are not considerably different 
between the results obtained for all electrodes and for the selected EEG channels only. 
 
Conclusions 
We have previously demonstrated that parametric spectral and coherence estimates obtained 
for consecutive 0.5 s-long EEG fragments and evaluated for low EEG rhythms were generally 
lower for alcoholics than for control individuals. Furthermore, Kruskal-Wallis one-way 
analysis of variance deemed these alterations as statistically significant. 
 
Although our previous results indicate that an automated detection of alcohol dependence may 
be possible based on the EEG power and coherence estimates, we conclude that no such 
detection was reliably achieved using the classification techniques assessed. We also observed 
that Fisher classifier produced biased results preferring one of the groups when the coherence 
estimates were used as the classification feature. Perhaps, this bias may be explained by a 
non-Gaussian distribution of the experimental data. 
 
Our observation of judicious selection of EEG channels not leading to noticeable 
improvements in classification may be restated as follows. Including in the classification EEG 
channels not contributing to statistically significant differences between the groups is not 
likely to affect the classification accuracy, since adding irrelevant features should not reduce 
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the classifiers’ performance. On the other hand, if only the EEG channels contributing to 
statistically significant differences between the groups are considered, classifier 
dimensionality is reduced and a more computationally efficient classifier may result. 
 
Nevertheless, the highest unbiased classification accuracy, sensitivity of 66.45% and 
selectivity of 67.12%, was observed from the regression-based classifier when θ-rhythm 
power estimates of all EEG electrodes were used as the classification features. 
 
We conclude that simple classification techniques, such as Euclidean and Fisher methods, are 
not suitable for reliable detection of alcohol dependence when using the EEG power and 
coherence estimates as classification features. On the other hand, a more advanced procedure, 
regression-based classifier, yielded better discrimination accuracy, although still not quite 
satisfactory for the majority of practical applications. Therefore, we hypothesize that more 
complicated discriminators, such as neural network or support vector machine classifiers, may 
lead to the improved classification results. 
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