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Abstract: Computational approaches could help in identifying deleterious non-synonymous 
single nucleotide polymorphisms (nsSNPs) in a disease related gene which is a difficult and 
laborious task through laboratory experiments. In the present study, we analyzed the impacts 
of nsSNPs on structure and function of Paraxonase 1 (PON1) using different bioinformatics 
tools. The human PON1 protein sequence and its corresponding gene’s SNP information 
were collected from UniProt and dbSNP databases, respectively. We utilized SIFT, 
Polyphen, I-Mutant 2.0, MutPred, SNP & GO, PhD-SNP and PANTHER tools in order to 
examine the total 39 nsSNPs occurring in the PON1 coding region. We filtered the most 
pathological mutations by combining the scores of the aforementioned servers and found  
8 SNPs (G344C, S302L, W281C, D279Y, H134R, F120S, L90P, C42R) as deleterious and 
disease causing. The PDB structure of PON1 protein was obtained from RCSB Protein Data 
Bank (PDB ID: 1V04). The deleterious SNPs in native PON1 were introduced using  
Swiss-PDB Viewer package and changes in free energy were observed for six out of eight 
mutant structures. Two SNPs, S302L (substitution of serine to leucine at 302 position in 
amino acid sequence) and L90P (substitution of leucine to proline at 90 position in amino 
acid sequence) caused the highest energy increase amongst all. The findings implicate that 
these nsSNPs would be analyzed further in detail to enumerate their possible association 
with the protein deteriorating and disease causal potentialities. 
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Introduction 
Single nucleotide polymorphisms (SNPs) or single nucleotide DNA sequence variations are 
recently being studied exclusively because of their possible association with human complex 
diseases. SNPs make up about 90% of all human genetic variation, occurring every 100-300 
bases along the 3-billion-base human genome, although their density vary between regions 
[14]. There are various types of SNPs, among these non-synonymous SNPs (nsSNPs) are one 
of the most important ones because they cause an amino acid alteration on the protein 
sequences and thereby can have an intense impact on protein structures and functions [12]. 
These nsSNPs affect gene regulation by shifting DNA and transcriptional binding factors and 
the preservation of the structural integrity of cells and tissues [3, 29]. Also, nsSNPs affect the 
functional roles of proteins in the signal transduction of visual, hormonal and other stimulants 
[8, 27]. 
 
There are a number of SNPs identified till date. Among these, identifying SNPs of likely 
functional importance still remains as a difficult task as requiring multiple testing of hundreds 
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or thousands of SNPs in candidate genes [22]. To overcome these limitations and serve as a 
complementary category of these traditional statistical methods, computational approaches 
that rely on properties of variants instead of experimental data of patients have been designed 
for the detection of deleterious variants with the growing functional annotations of the human 
genome sequence. Although, such methods may never be accurate enough to replace  
wet-lab experiments, they might be help in identifying and prioritizing a small number of 
susceptible and tractable candidate nsSNPs from pools of available data [19]. Recent studies 
have shown that computational methods are capable of well estimating the functional effects 
of nsSNPs [35]. 
 
Numbers of genes have been studied for SNP analysis to explore their plausible association 
with various diseases, PON1 gene is one of them. PON1 is one of three paraxonase gene 
family members, located in a gene cluster on chromosome 7q21.3-22.1 [10]. All of the 
paraxonases have antioxidant activities [24]. PON1 and PON3 share similar functions in 
association with high density lipoprotein (HDL) as described previously; however, PON3 has 
lower expression levels [22]. PON1 is the most abundant form and hence extensively 
investigated. Human PON1 (HuPON1) consists of 355 amino acids exclusively associated 
with HDL in association with human phosphate binding protein (HPBP). ApoA1 is major 
protein in HDL which stabilizes PON1 and binds it with very high affinity [18]. HuPON1 
plays a major role in the prevention of atherosclerosis by protecting HDL and low density 
lipoprotein (LDL) against oxidative stress mediated through the uptake of oxidized-LDL by 
macrophages, inhibition of macrophage cholesterol biosynthesis and stimulation of HDL 
mediated cholesterol efflux from macrophages [2]. The low serum paraoxonase activity in 
type 2 diabetes mellitus was recently shown to be correlated with the levels of oxidized LDL 
and vascular complications [31]. Polymorphisms in the PON1 gene have been investigated 
with respect to their association with various human diseases linked to oxidative stress such as 
coronary heart disease, Parkinson's disease, type 2 diabetes mellitus and inflammatory bowel 
disease [16], but the findings are inconsistent. However, a polymorphism of the PON1 gene 
that causes reduction in enzymatic activity, Q192R was found to be significantly associated 
with increased risk of heart diseases [34]. 
 
Although there are presently several published articles describing the association of SNPs in 
the HuPON1 gene with different types of diseases, computational analysis has not yet been 
undertaken on the functional and structural consequences of nsSNPs in this gene. In the 
current study, we employed different publicly available bioinformatics tools and databases for 
a comprehensive analysis of nsSNPs in PON1 gene. As the majority of disease mutations 
affect protein stability [30, 33], we also proposed modeled protein structures for the mutant 
proteins and compared them with the native protein in order to evaluate stability changes. 
 
Materials and methods 
Collection of PON1 SNP dataset 
The information about SNPs of PON1 gene of Homo sapiens was obtained from the db-SNP 
(http://www.ncbi.nlm.nih.gov/SNP/) [26] for further computational analysis.  
 
Assessment of the functional impacts of deleterious nsSNPs using  
a sequence homology-based method (SIFT) 
The functional impacts of the nsSNPs were further analyzed using SIFT (http://sift.jcvi.org) 
[20]. The SIFT program envisages deleterious or non-tolerated SNPs on the principle that 
some amino acids have a propensity to be conserved in a protein family and any substitution 
at these positions would influence protein function and thus have a phenotypic effect.  
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SIFT calculates the normalized probability in terms of SIFT score or tolerance index (TI) 
score for each mutation. The substitutions with normalized probabilities ≤ 0.05 are predicted 
to be non-tolerated or deleterious amino acids substitutions, whereas those > 0.05 are 
considered to be tolerated. 
 
Investigation of the functional consequences of coding nsSNPs using  
structure homology-based method (PolyPhen) 
To search the possible effect of an amino acid substitution on the structure and function of 
PON1 protein, PolyPhen V2 (http://genetics.bwh.harvard.edu/pph2) [1] server was used.  
The protein sequence with mutational position and two amino acid variants were submitted to 
the server. PolyPhen generates multiple sequence alignment of homologous protein structures, 
calculates the position-specific independent counts (PSIC) scores for each of the two variants, 
and then calculates the PSIC score difference between both the allelic variants. The higher the 
PSIC score difference, the higher the functional impacts a particular amino acid substitution is 
likely to have or the more likely it is to be damaging. The PolyPhen server classifies nsSNPs 
into three main categories, benign, possibly damaging, or probably damaging, and provides 
the corresponding specificity and sensitivity values. 
 
Analysis of the nature of non-synonymous mutations by MutPred 
The MutPred server [15] was employed to classify an amino acid substitution (AAS) as 
disease-associated or neutral. In addition, it predicts molecular cause of disease/deleterious 
AAS. MutPred is based upon SIFT and a gain/loss of 14 different structural and functional 
properties. The output of MutPred contains a general score (g), i.e., the probability that the 
amino acid substitution is deleterious/disease-associated, and top 5 property scores (p), where 
p is the P-value that certain structural and functional properties are impacted. 
 
Analysis of the effects of nsSNPs on the protein stability by I-Mutant 2.0 
I-Mutant 2.0 is a SVM based tools i.e., support vector machine based tool that leads to 
automatic protein stability change prediction which is caused by single point mutation [6]. 
The initiations were done either by using protein structure or more precisely from the protein 
sequence. The output is a free energy change value (ΔΔG). Positive ΔΔG value infers that the 
protein being mutated is of higher stability and vice versa is also true. 
 
Prediction of disease related nsSNPs by SNPs & GO 
SNPs & GO [5] is also a support vector machine (SVM) based on the method to accurately 
predict the mutation related to disease from protein sequence. The input is the FASTA 
sequence of the whole protein, the output is based on the difference among the neutral and 
disease related variations of the protein sequence. The RI (reliability index) with value of 
greater than 5 depicts the disease related effect caused by mutation on the function of parent 
protein. The PHD SNP [7] and PANTHER [28] algorithms were also used in the display of 
output. 
 
Modeling of nsSNPs on protein structures and calculation of their RMSD difference 
Structural analysis was executed to evaluate and compare the stability of native and mutant 
structures. The highest resolution (2.20 Å) native structure of the HuPON1 protein available 
in the Protein Data Bank (PDB) [4] has an ID of 1V04 [11]. The amino acid residue 
substitutions were carried out using the Swiss-PDB viewer [9], followed by energy 
minimization of the modeled 3D structures using a version of the GROMOS 43B1 force field 
in GROMOS96 software package embraced in the Swiss-PDB viewer [32]. The comparison 
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between the resulting native and modeled structures was made by the calculation of the 
potential energy and RMSD values using UCFS Chimera 1.8.1 [21]. 
 
Results and discussion 
Retrieval of SNPs 
The dbSNP was utilized for retrieving the SNPs in the human PON1 gene using the gene ID: 
5444. A total of 65 SNPs were found in the coding region, among them 21 were synonymous, 
39 non-synonymous and missense, 4 non-synonymous and nonsense, and 1 frame-shift 
mutations (Fig. 1). Only missense non-synonymous coding SNPs were chosen for further 
analysis. 

 

Fig. 1 Single nucleotide polymorphisms in the coding region  
of the PON1 gene retrieved from the dbSNP database 

 
Prediction of tolerated and deleterious SNPs  
When the SNPs were submitted to the SIFT program for predicting their effect on protein 
function, out of the 39 SNPs screened, 17 variants were found to be damaging and others as 
tolerated. Among the SNPs analyzed, SIFT did not predict the effect of one SNP  
(rs 149100710; E49K) on the function of PON1. The detailed result has been depicted in 
Table 1. 
 
Damaged nsSNPs by PolyPhen server 
All the 39 missense nsSNPs submitted to SIFT were also submitted to the PolyPhen server.  
14 out of 39 SNPs were considered to be probably damaging and exhibited a range of PSIC 
score difference between 0.76 and 1.00 (Table 2). Six of them were found as possibly 
damaging and others as benign. It can be seen from Table 2 that there was significant 
correlation between the results obtained from the evolutionary-based approach SIFT and the 
structural based approach PolyPhen. Out of the total 14 SNPs predicted as probably damaging 
by PolyPhen also detected as damaging by SIFT suggesting that these nsSNPs may disrupt 
both the protein function and structure. The SNPs were also analyzed by the MutPred server 
and found a strong correlation between the results obtained from the PolyPhen and MutPred 
servers. 
 
Damaging nsSNPs found by I-Mutant 2.0 
I-Mutant 2.0 is an online server used to predict stability of the induced mutations in protein 
structure. The results for the inputs of all 39 missense SNPs are given in Table 2. The results 
are predicted to be either increase or decrease of the free energy change upon mutation.  
35 out of 39 SNPs screened were found cause a decrease in the free energy. 
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Table 1. List of non-synonymous SNPs of the human PON1 gene analyzed by SIFT 
SNPs SIFT rs ID 

SNP Amino acid change Prediction SIFT score 
rs 368206333 G/T G344C DAMAGING 0 
rs 141598837 A/G K340R TOLERATED 0.09 
rs 145997673 G/A G330S DAMAGING 0 
rs 372449149 C/T T318I TOLERATED 0.06 
rs 185623242 C/T S302L DAMAGING 0 
rs 199693212 T/C F292S TOLERATED 0.24 
rs 148911901 T/A M289K TOLERATED 0.29 
rs 369422555 G/C W281C DAMAGING 0 
rs 72552786 G/T D279Y DAMAGING 0 
rs 368248410 A/G I271V TOLERATED 0.13 
rs 371803280 G/A V268M DAMAGING 0 
rs 548299742 G/A H246R TOLERATED 0.17 
rs 564064745 A/G D231N TOLERATED 0.11 
rs 370355032 C/T P210S TOLERATED 0.13 
rs 80019660 C/T A201V TOLERATED 0.55 
rs 13306698 A/G R160G DAMAGING 0 
rs 112078575 A/G K151R TOLERATED 0.68 
rs 536888659 G/A H134R DAMAGING 0 
rs 202062288 G/T M127I TOLERATED 0.29 
rs 144390653 T/G M127R DAMAGING 0 
rs 148785172 G/A A126T TOLERATED 1 
rs 189946844 A/T E123V DAMAGING 0.02 
rs 147867887 C/T T121I TOLERATED 0.91 
rs 368620674 T/C F120S DAMAGING 0 
rs 72552787 A/G I102V TOLERATED 0.19 
rs 532844853 C/G L100F DAMAGING 0 
rs 72552788 T/C L90P DAMAGING 0 
rs 367566813 T/C M88T DAMAGING 0 
rs 371338407 C/G P79R DAMAGING 0.02 
rs 199616322 C/T P59S TOLERATED 0.22 
rs 149100710 G/A E49K NOT PREDICTED - 
rs 144612002 A/G I48V TOLERATED 0.44 
rs 138512790 T/C C42R DAMAGING 0 
rs 141665531 C/T P40L TOLERATED 0.11 
rs 551653548 A/G R27Q TOLERATED 1 
rs 146211440 T/G S23A DAMAGING 0.03 
rs 141948033 A/G N19D TOLERATED 0.16 
rs 201783178 A/G R18G TOLERATED 1 
rs 150657027 C/T A6V TOLERATED 1 

 
Damaging nsSNPs found by SNPs&GO, PHD-SNP and PANTHER 
SNPs&GO is a server for the prediction of single point protein mutations likely to be involved 
in the insurgence of diseases in humans. The results of SNPs & GO for the inputs of all  
39 nsSNPs are given in Table 3. The results are displayed in terms of neutral or disease 
causing mutation. It was found that out of 39, 9 mutations were having disease causing 
abilities while the rests were neutral. 
 
PHD-SNP is a SVM-based classifier in the newer version of which a predictor was developed 
based on a single SVM trained and tested on protein sequence and profile information.  
The results acquired from this server for all nsSNPs are given in Table 3. In this server, the 
results are also given in the form of neutral or disease causing mutations. It was found that  
15 (out of 39) of the mutations were deleterious while the rests as neutral (Table 3).  
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Table 2. PolyPhen, MutPred and I-Mutant predictions for non-synonymous SNPs  
of the human PON1 gene 

 PolyPhen I-Mutant 

rs ID AA 
change 

PSID 
Score Sensitivity Specificity Prediction 

MutPred 
Probability of 
Deleterious 
Mutation 

RI Stability 

rs 368206333 G344C 1.000 0.00 1.00 PD 0.903 6 Decrease 
rs 141598837 K340R 0.107 0.93 0.86 Benign 0.509 5 Decrease 
rs 145997673 G330S 0.997 0.41 0.98 PD 0.631 3 Decrease 
rs 372449149 T318I 0.591 0.87 0.91 PD 0.443 5 Decrease 
rs 185623242 S302L 1.000 0.00 1.00 PD 0.674 1 Decrease 
rs 199693212 F292S 0.044 0.94 0.83 Benign 0.735 9 Decrease 
rs 148911901 M289K 0.0000 1.00 0.00 Benign 0.511 7 Decrease 
rs 369422555 W281C 1.000 0.00 1.00 PD 0.684 8 Decrease 
rs 72552786 D279Y 1.000 0.00 1.00 PD 0.727 1 Increase 
rs 368248410 I271V 0.033 0.95 0.82 Benign 0.525 5 Decrease 
rs 371803280 V268M 0.990 0.72 0.97 PD 0.616 6 Decrease 
rs 548299742 H246R 0.083 0.93 0.85 Benign 0.725 4 Decrease 
rs 564064745 D231N 0.924 0.81 0.94 PD 0.799 8 Decrease 
rs 370355032 P210S 0.628 0.87 0.91 PD 0.816 5 Decrease 
rs 80019660 A201V 0.916 0.81 0.94 PD 0.322 3 Decrease 
rs 13306698 R160G 0.916 0.81 0.94 PD 0.494 8 Decrease 
rs 112078575 K151R 0.169 0.97 0.87 Benign 0.294 9 Decrease 
rs 536888659 H134R 1.000 0.00 1.00 PD 0.719 4 Decrease 
rs 202062288 M127I 0.0000 1.00 0.00 Benign 0.438 5 Decrease 
rs 144390653 M127R 0.0000 1.00 0.00 Benign 0.622 4 Decrease 
rs 148785172 A126T 0.0000 1.00 0.00 Benign 0.436 3 Decrease 
rs 189946844 E123V 0.036 0.94 0.82 Benign 0.324 7 Decrease 
rs 147867887 T121I 0.0000 1.00 0.00 Benign 0.344 4 Decrease 
rs 368620674 F120S 0.997 0.41 0.98 PD 0.738 7 Decrease 
rs 72552787 I102V 0.001 0.99 0.15 Benign 0.480 3 Increase 
rs 532844853 L100F 1.000 0.00 1.00 PD 0.656 8 Decrease 
rs 72552788 L90P 1.000 0.00 1.00 PD 0.718 3 Decrease 
rs 367566813 M88T 0.508 0.88 0.90 PD 0.617 9 Decrease 
rs 371338407 P79R 0.760 0.85 0.92 PD 0.464 6 Decrease 
rs 199616322 P59S 0.004 0.97 0.59 Benign 0.611 4 Decrease 
rs 149100710 E49K 0.995 0.68 0.97 PD 0.479 6 Decrease 
rs 144612002 I48V 0.0000 1.00 0.00 Benign 0.381 7 Decrease 
rs 138512790 C42R 1.000 0.00 1.00 PD 0.889 8 Decrease 
rs 141665531 P40L 0.004 0.97 0.59 Benign 0.456 5 Decrease 
rs 551653548 R27Q 1.000 0.00 1.00 PD 0.665 7 Decrease 
rs 146211440 S23A 0.0000 1.00 0.00 Benign 0.234 1 Decrease 
rs 141948033 N19D 0.0000 1.00 0.00 Benign 0.377 2 Increase 
rs 201783178 R18G 0.0000 1.00 0.00 Benign 0.472 6 Decrease 
rs 150657027 A6V 0.0000 1.00 0.00 Benign 0.338 4 Increase 

AA ‒ amino acid, PD ‒ probably damaging 
 
PANTHER server was also utilized in the present study. Out of total 39 SNPs, the server did 
not give any prediction about the disease causing ability of 10. Among the 29 predicted,  
9 were found to be disease causing and the others as neutral (Table 3). 
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Table 3. List of non-synonymous SNPs analyzed for disease association  
by SNP&GO, PHD-SNP and PANTHER 

PHD-SNP PANTHER SNPs & GO AA 
change Prediction RI Probability Prediction RI Probability Prediction RI Probability 
G344C Disease 8 0.877 Disease 7 0.850 Disease 5 0.766 
K340R Neutral 4 0.284 Neutral 6 0.200 Neutral 9 0.064 
G330S Disease 1 0.540 Neutral 3 0.352 Neutral 3 0.359 
T318I Neutral 5 0.264 Neutral 1 0.437 Neutral 8 0.118 
S302L Disease 3 0.641 Disease 7 0.865 Disease 1 0.539 
F292S Neutral 2 0.410 Neutral 3 0.371 Neutral 4 0.279 

M289K Disease 2 0.623 Neutral 7 0.145 Neutral 5 0.270 
W281C Disease 6 0.800 Disease 7 0.830 Disease 4 0.714 
D279Y Disease 8 0.886 Disease 6 0.801 Disease 5 0.759 
I271V Neutral 8 0.108 Neutral 7 0.139 Neutral 9 0.030 

V268M Neutral 4 0.276 Neutral 1 0.465 Neutral 8 0.087 
H246R Neutral 3 0.361 Neutral 2 0.383 Neutral 5 0.273 
D231N Disease 2 0.579 Disease 1 0.536 Neutral 2 0.410 
P210S Disease 3 0.666 Disease 0 0.513 Disease 0 0.512 
A201V Neutral 2 0.376 Neutral 5 0.250 Neutral 6 0.189 
R160G Neutral 8 0.123 Neutral 1 0.453 Neutral 9 0.054 
K151R Neutral 9 0.036 Neutral 7 0.147 Neutral 10 0.005 
H134R Disease 5 0.764 Disease 6 0.793 Disease 5 0.734 
M127I Neutral 8 0.098 Neutral 7 0.175 Neutral 9 0.044 
M127R Disease 1 0.531 Neutral 4 0.289 Neutral 5 0.260 
A126T Neutral 9 0.045 Neutral 2 0.390 Neutral 10 0.019 
E123V Neutral 2 0.412 Neutral 1 0.435 Neutral 5 0.274 
T121I Neutral 8 0.084 Neutral 4 0.294 Neutral 9 0.026 
F120S Disease 2 0.597 Disease 3 0.632 Disease 2 0.591 
I102V Neutral 8 0.092 Neutral 6 0.204 Neutral 9 0.030 
L100F Neutral 3 0.330 Disease 3 0.654 Neutral 6 0.193 
L90P Disease 3 0.626 Disease 8 0.917 Disease 1 0.531 
M88T Neutral 4 0.278 Neutral 2 0.391 Neutral 7 0.154 
P79R Neutral 1 0.459 Neutral 1 0.455 Neutral 5 0.234 
P59S Neutral 8 0.106 NP - - Neutral 10 0.020 
E49K Disease 1 0.533 NP - - Neutral 7 0.142 
I48V Neutral 9 0.071 NP - - Neutral 10 0.020 
C42R Disease 7 0.859 NP - - Disease 1 0.573 
P40L Neutral 5 0.230 NP - - Neutral 9 0.052 
R27Q Disease 3 0.627 NP - - Neutral 6 0.224 
S23A Neutral 9 0.059 NP - - Neutral 10 0.017 
N19D Neutral 7 0.133 NP - - Neutral 9 0.066 
R18G Neutral 8 0.083 NP - - Neutral 9 0.035 
A6V Neutral 9 0.028 NP - - Neutral 10 0.009 

AA ‒ amino acid, NP ‒ not predicted 
 
By combining the predictions of SIFT, PolyPhen-2, I-Mutant 2.0, MutPred, SNPs&GO, 
PANTHER and PHD-SNP servers, eight SNPs (G344C, S302L, W281C, D279Y, H134R, 
F120S, L90P and C42R) were found to be more deleterious and disease associated (Table 4).  
These functionally significant variants were further superimposed with the native protein 
structure. 
 
Structural analysis of mutant structures 
The eight predicted deleterious and disease causal SNPs (rs 368206333, rs 185623242,  
rs 369422555, rs 72552786, rs 536888659, rs 368620674, rs 72552788 and rs 138512790) 
were mapped to the PDB ID 1VO4 native structure. The amino acid residue substitutions 
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were performed by Swiss-Pdb Viewer independently to get eight mutant modeled structures 
(1VO4 G344C, 1VO4 S302L, 1VO4 W281C, 1VO4 D279Y, 1VO4 H134R, 1VO4 F120S, 
1VO4 L90P and 1VO4 C42R, respectively). Then, energy minimizations were performed for 
the native structure (1VO4) and the mutant modeled structures. 
 

Table 4. Total energy and RMSD of native and mutant modeled structures of PON1 protein 

rs ID Amino acid change Total energy after 
minimization, (KJ/mol) 

RMSD between native and 
mutant structures, (Å) 

rs 368206333 G344C -6290.605 0.000 
rs 185623242 S302L -3747.879 0.011 
rs 369422555 W281C -6967.503 0.000 
rs 72552786 D279Y -7043.176 0.000 
rs 536888659 H134R -7338.226 0.000 
rs 368620674 F120S -7089.467 0.000 
rs 72552788 L90P -5486.519 0.044 
rs 138512790 C42R -6888.083 0.000 

Total energy of model structure (1V04) after energy minimization: -7082.146 KJ/mol. 
 
The total free energy for the native structure (1VO4) and the eight mutant modeled structures 
were given in the Table 4. Six out of eight mutant modeled structures showed an increase in 
free energy (less favorable change) in comparison with the native structure. The mutant 
models 1VO4 S302L and 1V04 L90P showed the greatest increase in energy, which may be 
explained by the energetically unfavorable substitution of serine to leucine and leucine to 
proline, respectively. Among these, substitution of leucine to proline in a protein structure 
have been found to cause significant reduction in protein stability associated with different 
diseases such as neuroblastoma, Parkinson’s disease, etc. [13, 17]. The remaining amino acid 
substitutions may not cause significant destabilization of the protein structure and hence show 
less energy change compared to others. Figs. 1-3 represent the successful creation of the 
mutations S302L and L90P in the PON1 native protein structure using Swiss-PDB viewer. 
The images were captured by the PyMOL Molecular Graphics System Version 1.3 [25].  
 
It can be seen from Table 3 that the RMSD values between the native structure and the mutant 
modeled structures are all similar, ranging from 0.000-0.0444 Å. Because these values are 
low, we can suggest that these mutations do not cause a significant change in the mutant 
structures with respect to the native protein structure. 
 

 
Fig. 2 The native protein structure with Leucine (90) and mutant protein structure with 
Proline (90) for the SNP L90P (rs 72552788) of human Paraxonase 1 (PDB ID: 1V04) 
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Fig. 3 The native protein structure with Serine (302) and mutant protein structure with 

Leucine (302) for the SNP S302L (rs 185623242) of human Paraxonase 1 (PDB ID: 1V04) 
 

 
Fig. 4 The superimposed structures of the native protein with the mutant protein  
with the SNP L90P (rs 72552788) and the mutant protein with the SNP S302L  

(rs 185623242) of Paraxonase 1 (PDB ID: 1V04) 
 
Conclusion 
In this study, we investigated the functional and structural impacts of SNPs in the PON1gene 
using computational prediction tools. We found 39 nsSNPs in the protein coding region of 
PON1 gene from the dbSNP database. Out of these missense nsSNPs, eight SNPs were found 
to be deleterious and disease causing by SIFT, PolyPhen, MutPred, I-mutant, PHD-SNP, 
PANTHER, SNP&GO. Furthermore, the structural analysis results showed that the amino 
acid residue substitutions which had the greatest impact on the stability of the PON1 protein 
were mutations 1V04 L90P (rs 72552788) and 1V04 S302L (rs 185623242). Substitution of 
leucine by proline has been found to be associated with various diseases and particularly it 
may cause a significant decline in protein stability. Based on our findings, we can conclude 
that these SNPs should be considered as important candidates in causing diseases related to 
PON1 malfunction. 
 
Abbreviations of amino acids 
A: Alanine, C: Cysteine, D: Aspartic Acid, E: Glutamic Acid, F: Phenylalanine, G: Glycine, 
H: Histidine, I: Isoleucine, K: Lysine, L: Leucine, M: Methionine, N: Asparagine, P: Proline, 
Q: Glutamine, R: Arginine, S: Serine, T: Threonine, V: Valine, W: Tryptophan, Y: Tyrosine. 
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