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Abstract: Marine organisms are potentially prolific sources of highly bioactive secondary 

metabolites that might represent useful leads in the development of new pharmaceutical 

agents. In this study the biological effect of the freeze-dried heteropolysaccharide, isolated 

and purified from the red microalga Rhodella reticulata strain using electroporation was 

evaluated. Two different types of cells  tumor and non-tumor were treated with the 

heteropolysaccharide alone or together with the application of electroporation. The effect of 

the treatment was evaluated in parallel: with proliferation test for estimating cell viability 

and with immunofluorescent cytoskeleton staining to establish changes in morphology. 

Evidence for cell line specific viability reduction (70% from the control in case of cancer cell 

line treatment and only 30% in non-tumor cells) in a dose dependent manner was presented. 

These findings will arouse further interest in heteropolysaccharide as a new anticancer drug 

suitable for clinical trials. 

 

Keywords: Antitumor effect, Rhodella reticulata heteropolysaccharide, Electroporation, 

Immunostaining. 

 

Introduction  
Marine resources have attracted worldwide attention in many research fields [8-10]. The focus 

is in the search for bioactive substances for development of new drugs, because of their 

relatively low toxicity and high bioactivity [24]. Cancer is one of the most lethal diseases that 

threaten human life. Therefore, it is more than important to find novel, effective and nontoxic 

compounds from natural sources to be used together with the generally used chemotherapy. 

The great potential of marine microalgal polysaccharides to be used as anti-inflammatory, 

antiallergic, analgetic, antitumor agents was recently reviewed [6, 19, 21]. Red algal 

heteropolysaccharides (hPSHs) have attracted much attention in the biochemical and medical 

areas because of their anti-cancer effects. The mechanism of the anti-cancer activity is related 

to the ability of hPSHs to inhibit the growth of cancer cells (cytotoxic or cytostatic effect), to 

stimulate the immune response, to inhibit tumor angiogenesis and to induce apoptosis  
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[13, 25]. There are certain compounds isolated from marine Cyanobacterium that can be used 

for a new type of anticancer drugs that act as antimitotic agents (IC50 values in three cell line 

ranging from 7 to 200 nM) that inhibits microtubule assembly and binding of cholchicine to 

tubulin [7]. The composition and heterogeneity of the cell-wall polysaccharide of the red alga 

Rhodella reticulata was found to contain xylose, 3-O-methyl pentose, glucose, galactose, 

rhamnose, ribose, arabinose, 4-O-methylgalactose, mannose and glucuronic acid in the 

approximate proportions of 12.4:6.7:1.0:2.2:4:0.06:0.4:2.4:0.4:1.6, and traces of 2,4-dimethyl 

hexose [5], together with 9% sulphates and 3% protein. Glucuronic acid and semi-esterified 

sulphate groups that determine the acidic properties of the polymer can also be found. 

 

Electroporation is a physical method that involves the application of high voltage electrical 

pulses to cells or tissue causing temporary permeabilization of the plasma membrane.  

This technique facilitates cellular gene and drug delivery for agents that have no or limited 

transmembrane transport [14-16]. Electroporation is used in cell and molecular biology, 

biotechnology and recently in medicine to potentiate the cytotoxic effect of anticancer drugs 

(electrochemotherapy). The electrochemotherapy has a high antitumor effectiveness in vitro 

and now provides a great promise for treatment of accessible human tumors [17, 18, 23].  

Its impact is due to the increased uptake and accumulation of chemotherapeutic drugs into 

cancer cells. However the electric field effects are still under active investigations at the 

cellular level. The cytoskeleton provides the essential functions of viable cells, as shape 

maintaining, cell-matrix and cell-cell interactions. The application of external electrical pulses 

can alter the cytoskeleton reorganization, thus affecting the cell adhesion. For instance, 

changes in the cytoskeletal structure have been observed during electroporation [11, 26] as 

well as electro transfer [20]. There are three major types of cytoskeletal structures: 

microtubules, actin filaments and intermediate filaments.  

 

The aim of this study was to estimate the antitumor effect of red algal hPSH (in different 

concentrations) applied alone or in combination with electroporation on the cell viability and 

cytoskeleton integrity of tumor and non-tumor cell lines.  

 

Materials and methods 

Strain  
The culture of the red alga Rhodella reticulata (Rhodophyta, strain UTEX LB2320 from the 

algal collection of the Department of Botany, University of Austin, Texas, USA) was used in 

the experiments. Rhodella reticulata was intensively cultivated in special glass vessels  

(Fig. 1) for 96 h in Brody Emerson medium at light intensity of 260 μE/m2s and temperature 

27 °C. The cell suspension was aerated with 1% CO2. 

 

 

Fig. 1 Installation for microalgae intensive cultivation 
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Polysaccharide 
After the intensive cultivation of the algae, the suspension was subjected to centrifugation for 

30 min at 6000 g. Cells were removed and the supernatant was precipitated with ethyl alcohol 

in a ratio of 1:2. After this operation, the precipitated hPSH was collected. Dissolving in 

distilled water on a magnetic stirrer was the next step. After that, dialysis was performed for 

24 h at 4 °C, followed by freeze drying of the hPSH. Different concentrations (10 µg/ml,  

50 µg/ml or 100 µg/ml) of it were tested. 

 

Cell lines 
A549 human lung adenocarcinoma cells were grown in RPMI 1640 medium (Lonza) supplied 

with penicillin-streptomycin in standard concentrations and 10% fetal calf serum (FCS) 

(Gibco Laboratories, Grand Island, NY). MDCK non-tumor epithelial cells were grown in 

complete Eagle’s minimal essential medium with Earle's salts (MEM), penicillin-

streptomycin at standard concentrations and 10% FCS (Gibco Laboratories, Grand Island, 

NY). The cell cultures were maintained in a 37 °C incubator with humidified atmosphere and 

5% CO2. Cultures were routinely passage at confluence using 0.25% trypsin/2mM EDTA 

(Lonza) for cell detachment. 

 

Electrotreatment protocol 
For electrotreatment a new electroporator (Chemopulse IV developed in the Institute of 

Biophysics and Biomedical Engineering), which generates bipolar pulses was used.  

The electrotreatment was done by 16 biphasic pulses [4]. In each experiment, electrodes with 

an inter-electrode distance of 1 cm were used. The intensity of applied electric fields was  

200 V/cm. One hundred μl with 1.5×105 cells were seeded 24 h prior to electroporation. 

Immediately before pulse delivery hPSH at different concentrations was added. After the 

electrical treatment, 900 μl MEM, supplemented with 10% FCS, was added to each sample. 

The controls were treated under the same conditions but without electrical pulse application 

and/or hPSH. For immunofluorescence staining experiments, cells were cultivated on cover 

glasses.  

 

MTS test for cell survival and proliferation 
To analyze the cytotoxic effect of the hPSH on A549 cell line and non-cancer MDCK cells, 

the MTS test (Promega) was performed for cell survival and proliferation as previously 

described [3]. Briefly, the adherent cells were treated as described above and incubated 

additionally for 24 h. Then, 50 μl of MTS reagent was added directly to the adherent cells. 

They were incubated for 2 h at 37 °C and the absorbance at 490 nm was recorded with a  

96-well plate reader Tecan Infinite F200 PRO (Tecan Austria GmbH, Salzburg).  

Three independent experiments were performed for each treatment.  

 

Actin staining 
The cell lines at density of 1.5×105 cells/ml were cultivated on cover glasses (18/18 mm) that 

had been placed in 6 well plates. After 24-hour incubation, the cells were treated with 

electroporation alone or in combination with different concentrations of hPSH (10 µg/ml,  

50 µg/ml or 100 µg/ml) in a basal cell medium and were cultivated for an additional 24 hours 

in full cell medium. After the incubation period, non-adherent cells were removed by rinsing 

three times with phosphate-buffered saline (PBS), pH 7.4. The adherent cells were fixed with 

1 ml 3% solution of paraformaldehyde (PFA) for 15 minutes at room temperature. The fixed 

cells were permeabilized using 1 ml 0.5% solution of Triton X-100 for 5 minutes and then 

incubated with 1 ml 1% solution of bovine serum albumin (BSA) for 15 minutes. The samples 



 INT. J. BIOAUTOMATION, 2016, 20(3), 407-416 
 

410 

were washed three times with PBS, pH 7.4 and then incubated for 30 minutes at room 

temperature with BODIPY 558/568 phalloidin. Again, the samples were washed three times 

with PBS and once with distilled water. Then they were installed on objective glasses by 

Mowiol. Preparations were analyzed using an inverted fluorescent microscope (Leica 

DMI3000 B, Leica Microsystems GmbH, Germany) with object HCX PL FLUOTAR 

63x/1.25 oil objective. 

 

Results and discussion 
In our study the influence of the algal hPSH on the cell viability and reorganization of the 

actin cytoskeleton of two different types of cell lines was compared: malignant cell line A549 

and MDCK  normal cell line. Both lines were from one and the same cytological type  

epithelial. 

 

MTS assay 
The effect of studied hPSH on the cell line viability was assessed by measuring the number of 

viable cells using MTS test. 24 h after treatment viability of cells (A549) was reduced  

(Fig. 2). The investigations of A549 cell line proved that viability was reduced in a dose 

dependent manner. By increasing of the concentration of the hPSH, statistically significant 

reduction was obtained. The results showed that even the lowest tested concentration  

(10 µg/ml) could induce reduction of cell viability of 34% without electroporation and 63% 

with electroporation. Applying electroporation the percent of viable cells additionally 

decreased. The highest concentration (100 µg/ml) led to about 70% viability decrease. 

Additional insignificant decrease of about 2% was measured after the combined treatment 

with electroporation (200 V/cm).  

 

 
Fig. 2 A549 cell line viability after treatment with hPSH alone (white bars) and in 

combination with 200 V/cm (black bars), bars – SD (Standart Deviation); *p < 0.05. 

 

Importantly, the effect of the hPSH on the viability of normal cells MCDK was significantly 

lower (Fig. 3).  

 

 
Fig. 3 MCDK cell line viability after treatment with hPSH alone (white bars) and in 

combination with 200 V/cm (black bars), bars – SD (Standart Deviation); *p < 0.05. 
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Even treatment with concentration of 100 µg/ml resulted in slight inhibition of cell growth by 

only 20%. Additional 10% reduction was registered at the combined treatment with 200 V/cm 

electrical pulses and 100 µg/ml hPSH. 

 

Immunofluorescence of actin following solo or combined treatment  

with hPSH and electrical pulses 
The role of the actin microfilaments in maintaining cell viability and functions is well known. 

In order to determine whether treatment with hPSH and/or electroporation at the above 

conditions is related with actin reorganization, the two cell lines were stained with phalloidin.  

In untreated cells intact actin filaments with a lot of stress fibers and typical cell shape was 

observed (Fig. 4A). After application of 10 µg/ml polysaccharide, thinner stress fibers and 

localization of actin microfilaments near to the cell membrane were observed (Fig. 4B).  

By increasing concentrations of applied hPSH to 50 µg/ml and 100 µg/ml, additional 

reorganization of the actin filaments and losing of the cells polarization were documented 

(Fig. 4C and D). A good correlation between cell viability test results and immunostaining 

was proved. 

 

 
Fig. 4 A549 cell line immunofluorescence of actin:  

A) control and after a single treatment with hPSH; B) application of 10 µg;  

C) application of 50 µg; D) application of 100 µg.  

The arrows point at actin fibers. Magnification 63x. 

 

In response to the combined treatment with 200 V/cm and even 10 µg/ml polysaccharide, the 

organization of actin filaments could no longer be detected. The overall cell morphology  

(Fig. 5B, C, D) was altered and cell shape was rounded in contrast with a control treated with 

electrical pulses only. 

 

In our study, MDCK – normal epithelial cell line was used as a control to A549 cancer 

epithelial cells. Treatment with 10-50 µg/ml hPSH cannot influence the organization of the 

actin cytoskeleton as well as the cell viability (Figs. 3 and 6). At application of 100 µg/ml of 

the hPSH, (Fig. 6D) a slight redistribution of actin filaments was observed. As we can see 

from Fig. 6A, B, C, D, the polarization and the number of cells were retained. 

 

A) B) 

C) D) 
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Fig. 5 A549 cell line immunofluorescence of actin:  

A) control and 200 V/cm, after combined treatment; B) application of 10 µg;  

C) application of 50 µg; D) application of 100 µg.  

The arrows point at actin fibers. Magnification 63x. 

 

 
Fig. 6 MDCK cell line immunofluorescence of actin:  

A) control and after a single treatment with hPSH; B) application of 10 µg;  

C) application of 50 µg; D) application of 100 µg.  

The arrows point at actin fibers. Magnification 63x. 

 

Despite additional application of electrical pulses and hPSH with increased concentrations no 

significant difference between combined and solo treatment was observed in case of treatment 

of non-tumor MDCK cell line, with almost no morphological changes observed (Fig. 7). 

 

Morphological observations were in good correlation with our functional MTS test results. 

 

Considering the effect against cancer cells, compounds that exhibit cytotoxic activity show 

valuable effects in chemotherapy only when their toxicity is higher for cancer cells than for 

non-cancerous cells. This selectivity against specific cancer cell lines is one of the 

requirements for the development of new drugs in order to lower the extent of side-effects. 

Despite the intensive investigations in this field in recent years, the mechanism of action of 

the different polysaccharides from various natural origins on a cell level had not been fully 

B) A) 

A) B) 

C) D) 

C) D) 
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elucidated [2]. In most cases they were described as possessing an immunomodulating 

activity [27]. One possible way of direct anti-cancer activity, could be the induction of tumor 

cell apoptosis [2]. In our study two levels of assessment: physiological-cell viability and 

morphological-cytoskeleton organization were examined. By immunofluorescence imaging, 

the reorganization of actin cytoskeleton, leading to reduction in tumor cell viability was 

visualized. The obtained results proved the selective effect of the hPSH on A549 human lung 

adenocarcinoma cell lines. The results of our studies, however, indicate that the process of 

polysaccharide-induced tumor cell death happened after 24 h exposure in our case, which 

generally depends on the type of cells and type of treatment of tumor cells tested. There is 

evidence for other sulphated heteropolysaccharides from algae that showed antiproliferative 

activity in HeLa cells as well as a cytotoxic effect towards human cancer cell lines such as 

MT-4 [1, 12, 22]. 

 

 
Fig. 7 MDCK cell line immunofluorescence of actin: 

A) control and 200 V/cm and after combined treatment with hPSH and 200 V/cm;  

B) application of 10 µg; C) application of 50 µg; D) application of 100 µg.  

The arrows point at actin fibers. Magnification 63x. 

 

From the results of this study we could conclude that the application of electroporation 

technique must be an important tool to reduce the applied concentration of hPSH.  

At a combined treatment (electroporation and hPSH), the effect of the lowest applied 

concentration of hPSH (10 µg/ml) was comparable to the effect of the highest concentration 

of polysaccharide (100 µg/ml) without electroporation. In that way optimal results could be 

reached with only 10 µg/ml treatment. 

 

Conclusion 
In conclusion it was evident that low hPSH concentration affected the tumor cells, while the 

non-tumor cells remained viable even at the highest concentration applied. This important fact 

could be an opportunity to use very low concentrations of the active substances in 

combination with electrical pulses aiming to reach the maximal specific antitumor effect on 

the tumor cells without any damage to the non-tumor cells. These findings will arouse further 

interest in algal hPSH as a new anticancer drug suitable for clinical trials.  

 

A) B) 

D) C) 
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