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Abstract: In this paper, the metaheuristics algorithm Cuckoo Search (CS), is adapted and 

applied for a model parameter identification of an E. coli fed-batch cultivation process.  

The dynamics of bacteria growth and substrate (glucose) utilization is described by a system 

of ordinary nonlinear differential equations. Using real experimental data set from an E. coli 

MC4110 fed-batch cultivation process a parameter optimization is performed.  

The simulation results indicate that the applied algorithm is effective and efficient. As a 

result, a model with high degree of accuracy is obtained applying the CS. The simulation 

results and comparison with genetic algorithm and ant colony optimization algorithm 

confirm the effectiveness of the applied CS algorithm in solving a cultivation model 

parameter identification problem. 

 

Keywords: Metaheuristic algorithm, Cuckoo search, E. coli cultivation, Parameter 

identification. 

 
Introduction 
More and more metaheuristic algorithms inspired by animal behavior phenomena has 

received considerable attention among researchers in case of solving complex optimization 

problems [2, 20, 24]. Algorithms like genetic algorithms (GA) and evolution strategies, ant 

colony optimization (ACO) [5], artificial bee colony (ABC) optimization [7], bat algorithm 

(BA) [27], Firefly algorithm (FA) [22], particle swarm optimization (PSO) [9], etc. are among 

a broad class of meta-heuristics that have been developed. The so-called nature-inspired 

metaheuristic algorithms have been used in a wide range of optimization problems [23]. 

 

Parameter identification of a nonlinear dynamic model of a cultivation process is more 

difficult than that of a linear one, as no general analytic results exist. Some of the difficulties 

that may arise include: convergence to local solutions if standard local methods are used, 

over-determined models, badly scaled model function, etc. Due to the nonlinearity and 

constrained nature of the cultivation process systems, these problems are very often 

multimodal. Thus, traditional gradient-based methods may fail to identify the global solution. 

Despite the availability of multiple various global optimization methods, the efficacy of the 

optimization method is always problem-dependent. In this case, nature-inspired optimization 

algorithms have received the early attention.  

 

There are already several applications of metaheuristic algorithms to cultivation process 

modelling and control – GA [4, 13, 19], FA [15], ACO [17] and BA [16]. The published 
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results confirm that the metaheuristic algorithms are a powerful and efficient tool for 

identification of the parameters in non-linear dynamic models of cultivation processes and 

their control. However, there is still room for finding new, more adequate modeling 

metaphors and concepts.  

 

Another optimization algorithm inspired by animal behavior phenomena is Cuckoo Search 

(CS). It takes as a metaphor the reproduction strategy of cuckoo species in the nature. CS is 

based on the interesting breeding behavior called brood parasitism that certain cuckoo species 

exhibit. The CS algorithm was proposed by Yang and Deb in 2009 [25]. Up to now, CS has 

been applied to solving many optimization problems [3, 10, 11, 28]. According to obtained 

results, CS is very efficient and can outperform other meta-heuristics, such as genetic 

algorithms [1, 26]. 

 

In this paper, CS algorithm, is applied for the first time in the field of mathematical modeling 

of bioprocesses. An optimization algorithm based on CS is proposed here for parameter 

identification of an E. coli MC4110 fed-batch cultivation process.  

 

The paper is organized as follows. The problem formulation is given in Section 2.  

The Cuckoo search algorithm for parameter identification of cultivation processes is proposed 

in Section 3. The numerical results and a discussion are presented in Section 4. Conclusion 

remarks are done in Section 5. 

 

Problem formulation 
Cultivation of recombinant micro-organisms, e.g. E. coli, in many cases is the only 

economical way to produce pharmaceutical biochemicals such as interleukins, insulin, 

interferons, enzymes and growth factors. Research on E. coli has increasingly accelerated 

since 1997, when its entire genome was published. As knowledge of E. coli grows, scientists 

are starting to build models of the microbe that captures some of its behavior [6, 8, 12, 14]. 

 

Mathematical model of E. coli fed-batch cultivation process 
Application of the general state space dynamical model to the E. coli cultivation fed-batch 

process leads to the following nonlinear differential equation system [15]: 

 

dX F
= X X

dt V
  , (1) 

 
/

1
in

S X

dS F
= X + S S

dt Y V
  , (2) 

dV
F

dt
 , (3) 

max

S

S

k S
 


, (4) 

 

where: X is the biomass concentration, [g/l]; S is the substrate (glucose) concentration,  

[g/l]; F is the influent flow rate, [1/h]; V is the bioreactor volume, [l]; inS  is the influent 

glucose concentration, [g/l]; µ is the specific growth rate, [1/h]; µmax is the maximum specific 

growth rate, [1/h]; YS/X is the yield coefficient, [g/g]; kS is the saturation constant, [g/l]. 
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In the model development of the E. coli fed-batch cultivation, the following assumptions are 

made: (i) The bioreactor is completely mixed; (ii) The substrate glucose is mainly consumed 

oxidatively and its consumption can be described by Monod kinetics; (iii) Variation in the 

growth rate and substrate consumption do not significantly change the elemental composition 

of biomass, thus balanced growth conditions are only assumed. 

 

Objective function 
Parameter estimation problem of the presented non-linear dynamic system (1)-(4) is stated as 

the minimization of the distance measure J between the experimental and the model predicted 

values of the considered state variables: 

 

   
2 2

exp mod exp mod

1

( ) ( ) ( ) ( ) min
n

i

J X i X i S i S i


     , (5) 

 

where n is the length of data vector for each state variable; Xexp and Sexp are known 

experimental data of biomass and substrate; Xmod and Smod are model predictions with a given 

set of the parameters. 

 

For parameter identification procedure, real experimental data from an E. coli MC4110  

fed-batch cultivation process are used. The cultivation experiments are performed in the 

Institute of Technical Chemistry, University of Hannover, Germany, during the collaboration 

work with the Institute of Biophysics and Biomedical Engineering, BAS, Bulgaria, funded by 

DFG. A detailed description of the cultivation conditions is presented in [18]. 

 

Cuckoo search algorithm 
Cuckoos are fascinating birds, not only because of the beautiful sounds they make but also 

because of their aggressive reproduction strategy [21, 23, 25]. Some cuckoo species lay their 

eggs in communal nests, and may remove other birds’ eggs to increase the hatching probability 

of their own. Quite a number of species engage in obligate brood parasitism by laying their 

eggs in the nests of other host birds (often other species) [21, 23, 25]. In this way cuckoos 

reduce the probability of their eggs being abandoned and thus increase their reproductivity. 

 

For simplicity in describing the standard CS, the following three idealized rules are used  

[21, 23, 25]: 

• Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest; 

• The best nests with high-quality eggs will be carried over to the next generations; 

• The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by 

the host bird with a probability pa  (0, 1). In this case, the host bird can either get rid of 

the egg or simply abandon the nest and build a completely new nest. 

 

As a further approximation, this last assumption can be approximated by replacing a fraction pa 

of the n host nests with new nests (with new random solutions).  

 

The CS algorithm uses a balanced combination of a local random walk and the global 

explorative random walk, controlled by a switching parameter pa. The local random walk can 

be written as: 

 
1 ( ) ( )t t t t

i i a j kx x s H p x x        , (6) 
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where t

jx  and t

kx  are two different solutions selected randomly by random permutation, H(u) is 

a Heaviside function,  is a random number drawn from a uniform distribution, and s is the 

step size. Here, ⊗ means the entry-wise product of two vectors. 

 

The global random walk is carried out using Lévy flights [21, 23, 25]: 

 
1 ( , )t t

i ix x L s    , (7) 

 

where α > 0 is the step size scaling factor and 
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/
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  . 

 

The initial solution is generated based on: 

 

x = Lb +(Ub − Lb)rand(size(Lb)), (8) 

 

where rand is a random number generator uniformly distributed in the space [0, 1] and Ub 

and Lb are the upper range and lower range of the j-th nest, respectively. 

 

The described CS algorithm can be presented in pseudo code as shown in Fig. 1 [23]. 

 

 
Fig. 1 Pseudo code of Cuckoo search algorithm 

 

Results and discussion 

Numerical computations 
For the parameter estimation of the considered model Eqs. (1)-(4), a set of identification 

procedures using CS, are performed in Matlab environment.  

 

Objective function F(x), x = (x1, ..., xd)
T
 

Generate initial population of n host nests xi 

    while (t < MaxGeneration) or (stop criterion) 

      Get a cuckoo randomly 

      Generate a solution by Lévy flights [e.g., Eq. (7)] 

      Evaluate its solution quality or objective value Fi 

      Choose a nest among n (say, j) randomly 

      if (Fi < Fj ), 

          Replace j by the new solution i 

      end 

      A fraction (pa) of worse nests are abandoned 

      New solutions (nests) are generated by Eq. (6) 

      Keep best solutions 

      Rank the solutions and find the current best 

      Update t ← t + 1 

    end while 

Post-process results and visualization 
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Computer specifications to run all optimization procedures are Intel® Core™i5-2320 CPU @ 

3.00GHz, 8 GB Memory (RAM), Windows 7 (64bit) operating system.  

 

The CS algorithm parameters, initially tuned on the basis of several pre-tests, taking into 

account the results in [1, 10, 11, 26], are as follows:  

 

 MaxGeneration = 200;  

 switching parameter pa = 0.25; 

 initial population of n = 30;  

 Lévy exponent   = 1.5. 

 

The upper range Ub and lower range Lb are defined as follows: 

 

 Lb = [0.30 0.0005 1.0],  

 Ub = [0.6 0.05 3]. 

 

The results of model parameter identification – µmax, YS/X and kS – with CS algorithm are 

obtained from 30 independent runs of the algorithm. The best, the worst and the mean results 

of the parameters estimates and the objective function value J are observed. The obtained 

results are summarized in Table 1.  

 
Table 1. Results from model parameters identification 

Results 
Model parameters 

J 
µmax YS/X kS 

best 0.4840 2.0194 0.0110 4.4440 

worst 0.5003 2.0222 0.0138 4.6641 

mean 0.4716 2.0205 0.0092 4.5662 

 
The results from the application of CS are compared to the results from application of GA for 

parameter identification of the cultivation model Eqs. (1)-(4) obtained in [17]. According to 

[17] the main ACO and GA parameters and operators are as follows: 

 Genetic algorithm 

 fitness function – linear ranking; generation gap = 0.97; 

 selection function – roulette wheel selection; crossover probability = 0.75; 

 crossover function – simple crossover; mutation probability = 0.01; 

 mutation function – binary mutation; number of generations = 200; 

 reinsertion – fitness-based; number of population = 30; 

 Ant colony optimization algorithm 

 evaporation parameter ρ = 0.5; number of generations = 200; 

 a = b = 1; number of population = 30. 

 

In Table 2, the results obtained from GA, ACO and CS for parameter identification of the 

cultivation model Eqs. (1)-(4) are summarized. 
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Table 2. Comparison of the parameter identification results from GA, ACO and CS 

Model  

parameters 
Estimates 

Genetic  

algorithm 

Ant colony 

optimization 

Cuckoo search 

algorithm 

µmax 

best 0.4909 0.4956 0.4840 

worst 0.5181 0.4641 0.5003 

mean 0.5039 0.5028 0.4716 

YS/X 

best 2.0226 2.0220 2.0194 

worst 2.0214 2.0240 2.0222 

mean 2.0223 2.0200 2.0205 

kS 

best 0.0118 0.0146 0.0110 

worst 0.0182 0.0104 0.0138 

mean 0.0147 0.0151 0.0092 

J 

best 4.4816 4.7408 4.4440 

worst 5.0094 6.2202 4.6641 

mean 4.6519 5.2849 4.5662 

 

In this paper, the results obtained from the three algorithms – GA, ACO and CS – under 

identical conditions, are compared. All algorithms have been run for 200 iterations with 

population size of 30 (respectively, chromosomes, ants, nests). As we can see from Table 2, 

the herewith presented CS algorithm yields better results than the ones produced by GA and 

ACO. It is noteworthy that the GA and ACO algorithms might have achieved better results if 

a different set of algorithm parameters have been applied. For example, GA with population 

size of 110 chromosomes, run for 200 iterations, achieves the best objective function result: 

J = 4.4332 [17]. Such algorithms required fine tuning of parameters for a specific problem, 

whereas CS algorithm is a more generic and robust one. In the CS algorithm, there are only 

two parameters – population size n, and switching parameter pa – that determine the 

algorithm’s efficiency. Once n is fixed, pa essentially controls the elitism and the balance of 

the randomization and local search [25]. So, the explanation of the fact that CS has 

outperformed GA and ACO could be that there are fewer parameters to be fine-tuned in CS 

compared to ACO, and especially to GA. Thus, in CS a good balance of intensive local search 

and an efficient exploration of the search space is easily achieved. Finding such a balance, 

mainly controlled by the algorithm parameters, leads to a more efficient algorithm [25]. 

 

Graphical comparisons usually clearly show the presence or absence of systematic deviations 

between model predictions and measurements. Obviously, one of the important criteria for the 

adequacy of a model is the quantitative measure of the differences between calculated and 

measured values. Based on CS, ACO and GA best estimated set of model parameters, the 

model predictions of the cultivation process variables, namely biomass X and substrate S, are 

compared to the experimental data points of the E. coli MC4110 cultivation. The graphical 

results are presented in Fig. 3 and Fig. 4, respectively.  
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Fig. 3 Experimental and model predicted data for biomass dynamics 
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Fig. 4 Experimental and model predicted data for substrate dynamics 

 
The graphical comparison shows that there is a good coincidence between model and 

experimental data for biomass and substrate concentrations for the three algorithms – CS, GA 

and ACO. However, the model obtained from CS predicts with a high degree of accuracy the 

dynamics of the process variables during the fed-batch cultivation of E. coli MC4110.  

As it can be seen from the detailed subwindow views of the time periods in Fig. 3 and Fig. 4, 

the obtained model applying CS perfectly predicts the dynamics of biomass and substrate.  

In the identification procedure, raw measurement data are used without any preprocessing. 

Despite the rather noisy experimental data for substrate concentration, the model successfully 

follows the substrate data trend. Thus, it can be concluded that the CS obtained model 

adequately predicts the dynamics of the biomass and glucose throughout the process. 
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Conclusion 
In this paper, the Cuckoo Search metaheuristic algorithm has been adapted and applied to the 

parameter identification of a non-linear dynamical model of E. coli MC4110 fed-batch 

cultivation process. The mathematical model of a cultivation process is presented by a system 

of ordinary differential equations, describing the main process variables – biomass and 

substrate. Numerical and simulation results reveal that correct and consistent results can be 

obtained using the CS algorithm. As a result, an adequate high-quality mathematical model of 

E. coli MC4110 cultivation process is obtained. Further the performance of CS algorithm is 

compared to the GA and ACO performance. Analysis shows that CS algorithm obtains better 

results than the ones yielded with GA and ACO, i.e. CS has outperformed both GA and ACO.  

 

The CS algorithm is more generic and robust for many optimization problems, compared to 

other metaheuristic algorithms. This fact confirms that the CS algorithm could be used as a 

powerful and efficient tool for identification of the parameters in the non-linear dynamic 

model of cultivation processes. 

 

In future works, it is intended to hybridize the CS algorithm with other metaheuristic based 

methods in order to achieve further improvement of effectiveness in solving bioprocess model 

parameter optimization problem.  
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