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Abstract: Problem arises when distinct morphologic changes are not seen in the 

electromyographic waveform of normal (control) and Parkinson’s subjects during data 

interpretation. This study aimed to ascertain whether neuro-degenerative disease, e.g., 

Parkinson’s disease (PD) affects gait and mobility with comparison to the healthy control. 

Fifteen subjects (left and right foot) from both the groups are selected where the signal is 

obtained using force-sensitive resistors (Gait Dynamics in Neuro-Degenerative Disease Data 

Base). The proposed methodology is divided into five parts: (i) 1 hr recording of gait dynamics 

data are segmented into three intervals (0-20 min, 20-40 min and 40-60 min);  

(ii) Normalization of each segmented data (20 min), i.e., preprocessing (noise and baseline 

drift removal); (iii) Then the frequency domain powers for each segments are calculated which 

further introduced features in the successive stages for classification and clustering;  

(iv) The classification of Parkinson’s disease and healthy control group is accomplished using 

Linear Discriminant Analysis (LDA); (v) Clustering of these two classes is performed using  

K-means clustering algorithm taking same sets of features. Certainly the classification and 

clustering results signify the classification probability using frequency domain power of gait 

dynamics/electromyogram signal. The re-substitution error of LDA during classification is 

found to be 21.11%. Moreover, significant and precise classification and clustering results are 

achieved between PD and control taking left-right foot frequency domain power as 

classification features. 

 

Keywords: Parkinson’s disease, Healthy control, Gait dynamics, Power in frequency domain, 

Linear discriminant analysis, K-means clustering.  

 

Introduction 
Gait analysis is used for assessing locomotors disabilities and evaluating corrective and 

therapeutic procedures [34]. As each muscle provides a specific function, the basic information 

to be gained by dynamic electromyography is phasing within the gait cycle [29]. Kugler [20] 

had described a technique which automatically classified between Parkinson’s disease (PD) 

patients and healthy controls using surface electromyographic (EMG) signals from 

standardized gait tests. Gait analysis reveals a characteristic pattern of leg muscle activation in 

PD, increased tibialis anterior activity during the swing phase and reduced amplitude of the 

EMG response and poor modulation in the leg extensor muscles during the stance phase [8, 9]. 

Gait disorders in PD may be either prominent or, even in the advanced stages of the disease, 

mild. Certain clinical features are more likely to be associated with disturbed gait: rapid course 

of motor symptoms [3]. Adaptability-of-Gait test has potential to identify a new gait 

performance between severe PD, moderate PD and age-matched controls [33]. Roland et al. 

[32] proposed a study to use EMG to dissociate frailty phenotypes in females with PD during 

routine daily activities and provide insight into how PD associated motor declines contributes 

to frailty and functional decline. Hausdorff et al. [15] have studied the detailed insight on 
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variation and resemblance among the proteins sequences of patients having Alzheimer’s, 

Parkinson’s and Huntington’s diseases. Paul et al. [28] have analyzed the impacts of nsSNPs 

on structure and function of Paraxonase 1 using different bioinformatics tools which helps in 

identifying deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) in a 

disease related gene. Cook et al. [6], DeLuca et al. [7] and Lofterod et al. [23] stated about the 

fundamental research on gait control and the associated mechanisms. They also discussed how 

gait analysis evolved as a clinical tool for surgical planning on cerebral palsy cases.  

Pollo [31] assessed the efficacy of surgical interventions, and evaluated the rate of deterioration 

in progressive disorders to evaluate the impact of medication and orthopedic aids. Carvalho [5] 

and Sousa [36] identified gait patterns, speed of walking, mechanical work made by the main 

muscular groups during the diverse phases, etc.. 

 

Bazner et al. [4], Frenkel-Toledo et al. [11] and Yogev et al. [38] described the computerized 

force-sensitive system which was used to quantify gait cycle timing, specifically the swing time 

and the stride-to-stride variability of swing time. The system measures the forces underneath 

the foot as a function of time. 

 

The gait patterns can be influenced by almost any variable such as age, weight, diseases, 

strength, walking surface, etc. [37]. Usually the gait patterns are obtained from force platforms 

that measure the ground reaction forces (GRF), equal and opposite to the ones made by the foot 

on the ground. Fig. 1 is a representation of a typical healthy subject GRF pattern during half a 

walking cycle (between the pink bars). It is divided in a (antero-posterior) breaking phase and 

an accelerating phase. For each leg, the point where no antero-posterior force is done  

(the location of the pink bars) is the point where the foot is under the hip [5].  

 

 
Fig. 1 Typical GRF gait pattern (adapted from Carvalho [5]) 

 

One of the typical features of gait in patients with PD is that the overall movement pattern 

remains more or less normal, except for the markedly reduced angular displacements in hip, 

knee and ankle joints [18, 25, 26]. Two of the difficulties encountered in performing an analysis 

of gait involved data manipulation and interpretation. The interpretative difficulty arises from 

the fact that these channels show dissimilar patterns among patients with the same syndrome 

[12, 13, 19, 30]. Even among normal individuals there exist dissimilar EMG patterns [1, 27, 

35]. Kunju et al. [21] proposed a technique which processed and analyzed EMG signal using 

filtering techniques. The results showed a marked variation in the root mean square amplitude 

levels and median frequency of EMG as the subject’s walking pace changed [21].  

Here, frequency domain power of both right and left foot were taken as features for 

classification between control and Parkinson’s gait dynamics.  

 

Methodologies 
Fig. 2 illustrates the different methods adopted for this gait dynamics study. The following 

sections demonstrate the workflow starting from the gait dynamics database generation to the 

classification of the control and Parkinson’s subjects. 
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Fig. 2 Block diagram of proposed methodologies 

 

Gait Dynamics in Neuro-Degenerative Disease Data Base 

To understand better the pathophysiology of these diseases and to improve our ability to 

measure responses to therapeutic interventions, it may be helpful to quantify gait dynamics 

accurately. The records used in the proposed methodology in Gait Dynamics in Neuro-

Degenerative Disease Data Base [15] are from patients with PD (n = 15) and records from  

15 healthy control subjects (Table 1). The raw data were obtained using force-sensitive 

resistors, with the output roughly proportional to the force under the foot. Here the selected 

recordings are having 1 hour length and 2 rows (signals) with 90000 columns (samples/signal) 

for left-right foots; sampling frequency: 300 Hz and sampling interval: 0.003(3) sec.  

 

Segmentation and pre-processing 
The 1 hour gait data having 90000 columns (samples/signal) for left-right foots are segmented 

into three parts each having 30000 columns (samples/signal), i.e., 20 min, respectively.  

The EMG signals are passed through pre-processing stages where the baseline drifts and noise 

(i.e., low frequency and high frequency components) are eliminated. The baseline drift of EMG 

signal (Fig. 3) is removed by applying moving average filtering [17] and the process is 

equivalent to low pass filtering with the response of the smoothing given by the difference 

equation: 

 

        
1

1
2 1

sY i Y i N Y i N Y i N
N

      


, (1) 

 

where  sY i  is the smoothed value for the ith data point, N is the number of neighboring data 

points on either side of i, and 2N + 1 is the span. The moving average smoothing method used 

by Curve Fitting Toolbox follows these rules [17]: 

 The span must be odd.  

 The data point to be smoothed must be at the center of the span.  

 The span is adjusted for data points that cannot accommodate the specified number of 

neighbours on either side. 

 The end points are not smoothed because a span cannot be defined. 
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Table 1. Subjects information of Gait Dynamics in Neuro-Degenerative Disease Data Base 

Group 
Age 

(years) 

Height 

(meters) 

Weight 

(kg) 
Gender 

Gait 

speed 

(m/sec) 

Duration/ 

Severity 

control1 57 1.94 95 f 1.33 0 

control2 22 1.94 70 m 1.47 0 

control3 23 1.83 66 f 1.44 0 

control4 52 1.78 73 f 1.54 0 

control5 47 1.94 82 f 1.54 0 

control6 30 1.81 59 f 1.26 0 

control7 22 1.86 64 f 1.54 0 

control8 22 1.78 64 f 1.33 0 

control9 32 1.83 68 f 1.47 0 

control10 38 1.67 57 f 1.4 0 

control11 69 1.72 68 f 0.91 0 

control12 74 1.89 77 m 1.26 0 

control13 61 1.86 60 f 1.33 0 

control14 20 1.9 57 f 1.33 0 

control15 20 1.83 50 f 1.19 0 

park1 77 2 86 m 0.98 4 

park2 44 1.67 54 f 1.26 1.5 

park3 80 1.81 77 m 0.98 2 

park4 74 1.72 43 f 0.91 3.5 

park5 75 1.92 91 m 1.05 2 

park6 53 2 86 m 1.33 2 

park7 64 1.67 54 f 0.91 4 

park8 64 1.83 73 m 0.84 4 

park9 68 1.92 84 m 1.05 1.5 

park10 60 1.94 74 m 1.19 3 

park11 74 2.04 100 m 0.5 3 

park12 57 1.72 65 f 0.98 3 

park13 79 1.68 59 f 0.84 3 

park14 57 2.13 84 m 0.98 3 

park15 76 2 96 m 1.19 2.5 

 

 
Fig. 3 Segmented and pre-processed EMG signal 
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The noise cancellation (Fig. 3) is performed with Discrete Wavelet Transform (DWT) [2] for 

the gait dynamic/EMG signal. The DWT of a signal x is calculated by passing it through a series 

of filters. First the samples are passed through a low pass filter with impulse response g resulting 

in a convolution of the two: 

 

        *
k

y n x g n x k g n k




   .  (2) 

 

The signal is also decomposed simultaneously using a high-pass filter h. The outputs are giving 

(Fig. 4) the detail coefficients (from the high-pass filter) and approximation coefficients  

(from the low-pass). It is important that the two filters are related to each other and they are 

known as a quadrature mirror filter. 

 

 
Fig. 4 Block diagram of filter analysis 

 

However, since half the frequencies of the signal have now been removed, half the samples can 

be discarded according to Nyquist’s rule. The filter outputs are then sub sampled by 2. In the 

next two formulas, the notation is the opposite: g denotes high pass and h – low pass as is 

Mallat’s and the common notation: 

 

     2  low

k

y n x k h n k




  ,   (3) 

     2high

k

y n x k g n k




  .  (4) 

 

Results analysis 

Frequency domain power  
Power spectral density describes how the power of a signal or time series is distributed over the 

different frequencies. The average power P of a signal x(t) is the following time average: 

 

21
lim ( )

2

T

T
T

P x t dt
T



  .  (5) 

 

So the total average power is computed as the sum of the power of all the frequency components 

of the 20 min gait dynamic signal. Left-right foot gait dynamic frequency domain powers are 

tabulated in Table 2. 

 

Linear discriminant analysis 
In this case, multi-class Linear Discriminant Analysis (LDA) (Fig. 5) is used to classify two 

unknown group of EMG signals (i.e., PD and control) based on the frequency domain features 

(e.g., left-right foot frequency domain power) by calculating of mean, global mean, mean 

subtraction, transpose, covariance, probability, frequencies and at the end defining thresholds 

for each class on the distributed space area [14].  
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Table 2. Frequency domain powers of gait dynamics data 

Subject 

No 

Time 

(min) 
CL_PFa CR_PFb PL_PFc PR_PFd 

1 

0-20 3.1271e+05 3.4865e+05 1.7192e+05 2.2076e+05 

20-40 2.7568e+05 3.3898e+05 2.0067e+05 2.4239e+05 

40-60 2.7687e+05 3.5937e+05 2.0211e+05 2.3759e+05 

2 

0-20 2.2092e+05 3.4539e+05 1.9976e+05 2.3055e+05 

20-40 1.7661e+05 2.7386e+05 2.1665e+05 2.0676e+05 

40-60 1.8913e+05 2.1937e+05 2.4219e+05 2.1641e+05 

3 

0-20 3.7444e+05 2.1823e+05 2.0253e+05 1.5603e+05 

20-40 3.9933e+05 2.2950e+05 2.1071e+05 1.6909e+05 

40-60 3.8379e+05 2.2437e+05 1.9435e+05 1.6102e+05 

4 

0-20 2.5809e+05 2.4491e+05 2.2362e+05 2.0417e+05 

20-40 2.4929e+05 2.4455e+05 2.4165e+05 2.1304e+05 

40-60 2.4544e+05 2.4608e+05 2.4894e+05 2.1941e+05 

5 

0-20 2.5729e+05 2.0405e+05 3.6301e+05 2.8953e+05 

20-40 1.4262e+05 2.5528e+05 1.4938e+05 2.9659e+05 

40-60 1.5329e+05 2.7650e+05 1.0833e+05 2.9480e+05 

6 

0-20 3.5596e+05 2.4761e+05 2.2817e+05 2.3037e+05 

20-40 3.5255e+05 2.5104e+05 2.1643e+05 2.4923e+05 

40-60 3.6962e+05 2.6476e+05 2.0758e+05 2.6181e+05 

7 

0-20 2.5492e+05 2.8901e+05 1.9902e+05 1.9167e+05 

20-40 2.6495e+05 2.9207e+05 2.1643e+05 1.9878e+05 

40-60 2.6920e+05 3.0526e+05 1.2948e+05 1.2976e+05 

8 

0-20 2.1024e+05 2.1176e+05 1.9652e+05 9.5291e+04 

20-40 1.7993e+05 2.0495e+05 1.8061e+05 7.4609e+04 

40-60 1.6784e+05 1.9124e+05 1.8062e+05 7.8080e+04 

9 

0-20 3.2321e+05 3.3188e+05 1.7693e+05 3.2925e+05 

20-40 3.1115e+05 3.3721e+05 1.7793e+05 3.2114e+05 

40-60 3.0096e+05 3.2844e+05 1.8255e+05 3.1965e+05 

10 

0-20 3.0582e+05 3.7786e+05 1.8827e+05 4.3117e+05 

20-40 3.1379e+05 3.8864e+05 1.7032e+05 3.7005e+05 

40-60 3.0189e+05 3.6905e+05 2.1930e+05 3.9099e+05 

11 

0-20 3.7527e+05 2.2605e+05 1.4265e+05 1.9703e+05 

20-40 3.5871e+05 2.3161e+05 1.1440e+05 1.4822e+05 

40-60 3.8496e+05 2.2133e+05 1.8558e+05 1.7516e+05 

12 

0-20 3.6059e+05 2.3104e+05 2.6311e+05 1.5553e+05 

20-40 3.4068e+05 2.1518e+05 2.5417e+05 1.6636e+05 

40-60 3.3783e+05 2.2133e+05 2.4508e+05 1.6544e+05 

13 

0-20 2.3918e+05 3.3716e+05 3.0053e+05 1.8468e+05 

20-40 2.5516e+05 2.1745e+05 3.0485e+05 1.8270e+05 

40-60 2.3702e+05 3.2087e+05 2.9633e+05 1.7793e+05 

14 

0-20 2.4474e+05 2.7825e+05 1.6497e+05 2.7418e+05 

20-40 2.4177e+05 2.7805e+05 2.3931e+05 1.7114e+05 

40-60 2.4173e+05 2.8423e+05 2.5805e+05 1.0363e+05 

15 

0-20 1.7909e+05 2.2138e+05 2.4601e+05 2.3766e+05 

20-40 1.9765e+05 2.0728e+05 2.0257e+05 2.2520e+05 

40-60 2.0883e+05 1.8233e+05 1.9581e+05 2.3346e+05 
aCL_PF = Control(Left-foot)_Power in Frequency Domain,  
bCR_PF = Control(Right-foot)_Power in Frequency Domain, 
cPL_PF = Parkinson’s(Left-foot)_Power in Frequency Domain, 
dPR_PF = Parkinson’s(Right-foot)_Power in Frequency Domain. 
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Duda et al. [10] described the mathematical derivation of the LDA as follows: 

 

     T 1 T 11
ln

2
i i i i id x P C x C m m C m   , (6) 

 

where 
im  is the N length of mean vector for ith class, Ci is the N×N covariance matrix for the 

ith class, P(Ci) is the prior probability of class Ci. The selected class is the one that has the highest 

value of di(x).  

 

         
a) misclassification result b) classification using LDA 

Fig. 5 Classification of Parkinson’s and control gait dynamics using LDA 

 

K-means clustering 
K-means clustering is a method of vector quantization and is implemented in this gait dynamic 

study to cluster (Fig. 6) the PD and control EMG signals using same sets of features. Given a 

set of observations  1 2, ,  ,  nx x x , where each observation is a d-dimensional real vector,  

K-means clustering aims to partition the n observations into sets  1 2    ,  ,  ,  kS S S S  ,     k n  

so as to minimize the within-cluster sum of squares (WCSS) (sum of distance functions of each 

point in the cluster to the K center). In other words, its objective is to find: 

 

  2

1

min

i

k

i

i x S

arg s X 
 

 , (7) 

 

where 
i  is the mean of points in 

iS . 

 

For a given set of K-means    1 1

1  , , km m , the algorithm proceeds by alternating between two 

steps [24]: 

 
Assignment step: Assign each observation to the cluster whose mean yields the least WCSS. 

Since the sum of squares is the squared Euclidean distance, this is intuitively the “nearest” 

mean. 
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a) partition into two clusters b) cluster assignments and centroids 

Fig. 6 Clustering of two regions using K-means 
 

      2 2: , 1
t t t

i p p i p jS x x m x m j j k       , (8) 

 

where each  px is assigned to exactly one  t
S , even if it could be assigned to two or more of 

them. 

 

Update step: Calculate the new means to be the centroids of the observations in the new clusters 

 

 

 
 

1 1

t
j Si

t

i jt
xi

m x
S




  . (9) 

 

Since the arithmetic mean is a least-squares estimator, this also minimizes the WCSS objective. 

 
Discussions 
Li [22] discussed the application of a neural network in medical diagnosis using back 

propagation and results calculated as “Among the training samples, the detection accuracy rate 

for Parkinson’s patients is 100%, the detection accuracy rate for non-Parkinson’s patients is 

95% and misdiagnosis rate is 5%. Among the testing samples, the detection accuracy rate for 

Parkinson’s patients is 96.3%, the detection accuracy rate for non-Parkinson’s patients is 

93.3% and misdiagnosis rate is 6.7%”. Tabulated frequency domain powers (Table 1) of left-

right foot were introduced as the classifier parameters for the LDA and K-means clustering 

techniques. Fig. 5(a) shows the misclassification result (cross marks) during classification by 

LDA.  

The re-substitution error of LDA is found to be 21.11% and the misclassification error for 

quadratic discriminant analysis is 18.89%. Moreover, LDA is precisely classifying these two 

classes (Fig. 5(b)) taking left-right foot frequency domain power as classifier features.  

Using the same sets of features in K-means clustering, significant results achieved (Fig. 6) in 

partitioning and cluster assignments of control and Parkinson’s regions. The best total sum of 

distances = 7.66504e+06 where replicate is 4 and total iterations are 7. The EMG signals from 

Gait Dynamics in Neuro-Degenerative Disease Database were recorded using force-sensitive 
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resistors, which show no significant morphological changes in the signals patterns of PD and 

control. The amplitude changes and strides length are also calculated before selecting frequency 

domain power of signal as a feature. But both the amplitude and average stride length could not 

contribute sufficiently to be marked as classifier features for this study. The energy-power 

domain changes for healthy and neuro-degenerative disease may be considered as a noticeable 

parameter in gait dynamic study. 

 

Conclusion 
Dynamic electromyography offers a means of directly tracking muscle activity.  

The myo-electric signal sufficiently parallels the intensity of muscle action to serve as a useful 

indicator of its mechanical effect. Previous methods were based on observations and prone to 

errors related to person’s walking alteration pattern. Here signal processing techniques were 

implemented in sequential order which leads to classification of PD and control subjects. 

Initially the raw data were subjected to normalization (i.e., noise and baseline drift cancellation) 

for further processing (i.e., feature extraction, classification and clustering). LDA and K-means 

significantly performed the classification and clustering operations respectively. The visual 

interpretations of these results are clearly showing the two different classes, e.g., Parkinson’s 

disease and control subjects. Further research can be accomplished in the field of pattern 

recognition and classification between amyotrophic lateral sclerosis, Parkinson’s disease and 

control. 
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