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Abstract: Pneumatic artificial muscles (PAMs) have properties similar to biological muscle 

and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by 

PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for 

jumping movement needs to be analysed. The synchronous control on the position and 

stiffness of the joint is important to improve the flexibility of leg. The accurate force model of 

PAM is the foundation to achieving better control and dynamic jumping performance.  

The experimental platform of PAM is conducted, and the static equal pressure experiments 

are performed to obtain the PAM force model. According to the testing data, parameter 

identification method is adopted to determine the force model of PAM. A simulation on the 

position and stiffness control of the knee joint is performed, and the simulation results show 

the effectiveness of the presented method.  

 

Keywords: Pneumatic artificial muscle, PAM force modelling, Bionic joint, Position and 

stiffness, Control algorithm. 

 

Introduction 
The bionic robot is one of the important researching directions. Quadruped robots have 

several advantages; they have better load performance, environment adaptability, less power 

consumption, have simpler structure as compared to six-legged or eight-legged robots, which 

have become a hot topic in the field of bionic robots [3, 6].  

 

For a quadruped robot, the jumping movement has some advantages in the mobility and 

environmental suitability. The jumping movement is characterized by large instantaneous 

forces and short duration. Some jumping leg mechanisms have been developed worldwide. 

For a rigid robotics leg mechanism, it is difficult to meet the need of high-speed locomotion; 

otherwise, the musculoskeletal system is suitable for a jumping movement. PAMs allow 

dynamic and agile movements for the robot with the property of light weight and a large 

amount of energy converted in a short period of motion.  

 

As PAMs have many desirable characteristics, such as flexibility similar to that of biological 

muscles, high power-to-weight ratio, high power-to-volume ratio, and inherent compliance, 

they have been widely used in various robotic systems [2]. The accurate output force model of 

PAM is the basis of motion control. It is difficult for the robotics system driven by PAMs to 
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obtain high-precision control effect. One of the reasons is that it is difficult to obtain accurate 

output power models. Although PAM has a simple structure, the factors that affect the output 

force are very complex, involving nonlinear compression, nonlinear deformation of the 

rubber, the effect of temperature on the gas and material, etc. These factors make it difficult to 

obtain an accurate mathematical model of PAM. 

 

In recent years, researchers have attempted a variety of methods to determine a mathematical 

model of PAM, and these can be divided into two categories: theoretical modelling and 

experimental data modelling. Chou and Hannaford [1] used the equivalent power principle for 

PAM modelling. Tondu and Lopez [12] used the principle of virtual work for PAM 

modelling. As many factors were ignored, the model exhibits large errors with actual results. 

Tsagarakis and Caldwell [13] considered the non-cylindrical end of PAM in an inflated state, 

the rubber thickness, the friction and the elastic force of the rubber, and determined the PAM 

model in contraction and stretching states. Although the model has relatively higher accuracy, 

it is very complex, and hence difficult to use in an actual application. 

 

In the experimental data modelling method, the mathematical model of PAM with some 

unknown parameters is first assumed. Second, experiments are performed to measure 

input/output PAM data. Third, the unknown parameters are determined by fitting the 

experimentally measured data, and the mathematical model of PAM is thus determined. 

Repperger et al. [10] used the experimental method, where PAM was regarded as a variable 

stiffness spring from the point of elasticity. When PAM is in the inflated state, it is regarded 

as hard spring stiffness. When PAM is in the elongation and deflated state, it is regarded as 

soft stiffness. The generated force of PAM includes steady state and transient spring force. In 

case of equal tension, the elastic parameters modulus and Poisson’s ratio are used to express 

the characteristic parameters of PAM. Reynolds et al. [11] proposed that PAM is equivalent to 

a kind of a parallel model, composed of a spring, a buffer and a shrinking unit. The model is 

related to the PAM’s internal pressure. 

 

As highlighted above, an adequate PAM model cannot be obtained using purely theoretical 

analysis considering the characteristics of PAM.  

 

When a quadruped robot moves with high-speed, there is a momentary contact force between 

the robot foot and the environment. A suitable control method is needed to achieve the robot’s 

interaction with the environment in a flexible manner. This requires controlling both the joint 

trajectory and the joint stiffness so as to allow changes in real-time dynamic contract stiffness 

and load, and lead to good motion performance with high speed.  

 

Nakamura et al. [7] have designed an antagonistic bionic joint driven by PAMs. They have 

adopted mechanical equilibrium model-based PI control method and have carried out an 

experimental study on the positon and stiffness decoupling control. They have controlled the 

stiffness with a fixed value, and the joint position control accuracy is relatively low.  

Wang et al. [5, 14] have developed a quadruped robot driven by PAMs. They gave adopted a 

basic position control method and model-based position control method to control the joint 

positon. Their experimental investigations show the variation of joint stiffness with time.  

Xie et al. [15] have presented a lower limb mechanism driven by PAMs. Based on analyzing 

the output force model of PAM, a PID control algorithm is adopted. 

 

In this paper, the experimental method is adopted to obtain a PAM model closer to the real 

system. A static equal pressure experiment is conducted to test the mechanical properties of 
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PAM. The experimental data are used to identify the axial force model. Based on the accurate 

force model of PAM, the PID and the BP (Back-propagation) control method on the position 

and stiffness of the knee joint are adopted for comparison. The simulation results are used to 

evaluate the effectiveness of the presented control method. 

 

Musculoskeletal leg 
The musculoskeletal leg is presented as shown in Fig. 1. The leg mechanism has three 

rotational joints, which are the side-swing hip joint, the forward/backward-swing hip joint and 

the knee joint.  

 

The flexion/extension of the hip joint and the knee joint are all driven by two PAMs to 

increase their rotating range. PAM characteristics – tending to contract, and hard to elongate – 

are considered to arrange the PAMs of the knee joint. So the mechanical stretch structure is 

designed at the upper end of the PAM, which can compensate the lack of PAM elongation. 

The rotating range of the side-swing hip joint is 23°, the forward-swing hip joint is 10° and 

the knee joint is 55°, respectively [4].  

 

Knee joint

Forward-swing hip joint

Potentiometer

PAM 1

PAM 2

PAM 3

PAM 4

Potentiometer

Shank

Passive ankle joint

Foot

Thigh

Side-swing hip joint

 
Fig. 1 Musculoskeletal leg mechanism 

 

PAM modelling 
For the theoretical model of PAM, the Chou model is widely used based on the equivalent 

power principle and the virtual work principle. The relationship between the PAM force,  

the inner pressure and the contraction ratio is as follows [9, 16]:   

    
2

20
1 2, 1

4

d
F p p


   

 
   

 
, (1) 

where p is the PAM inner pressure, 
1  and

2 are constants related to the PAM parameters, 

2 2

1 0 2 03/ tan , 1/ sin     , 
0 is the initial braid angle, which is defined as the angle 

between the PAM axis and each thread of the braided sheath before expansion,  is the 

contraction ratio expressed as 
0 0( ) /l l l   , 

0l is the initial length and 
0d  is the initial 

diameter of the PAM. 
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Although the force model above describes the relationship between the axial output force, the 

inner gas pressure and the shrinkage rate of PAM, there is obviously a difference between this 

model and the experimental data because it ignores the rubber elastic, the wall thickness, the 

interaction between the rubber and the fiber bundle, and the deformation of the PAM end. 

Meanwhile, the relatively complex mathematical expression is not suitable for practical 

applications. In this paper, the experimental method is adopted to determine the PAM model. 

First, the mathematical model is assumed, and the parameters are determined by the 

experimental data and the parameters identification methods. 

 

Hypothetical model of PAM 
From viewpoint of practical control and application, the PAM model needs to be determined 

with reasonable balance between model complexity and parameter identification accuracy.  

On the one hand, the control precision of the system relies on the mathematical model of 

PAM. Therefore, the accuracy of the parameter identification directly affects the quality of 

control of the system. However, higher precision of the parameter identification will 

inevitably lead to a too long and complicated mathematical model, and this will have an 

impact on the real-time control system performance.  

 

A mathematical model of PAM output force can be determined by the experimental method, 

which could show the relationship among the output force F, the gas pressure p  and the 

contraction rate  . Considering the nonlinear relation between the output force and the 

displacement of PAM, an improved Tondu-Lopez model [8] is proposed as: 

     1 2 1 2 1 2F a a p b b p c c p e             ,  (2) 

where
1 2 1 2 1 2, , , , ,a a b b c c are the parameters which can be determined using the least-squares 

method,   is the nonlinear attenuation coefficient describing the shrinkage rate  of PAM. 

 

Experimental system 
The experimental system is composed of PAMs, a stretching device (including reducer, with a 

reduction ratio of 10), a force sensor, a pressure sensor, a proportional valve, a data 

acquisition card and a computer. The stretching device is composed of a step motor, a lead 

screw with 5 mm pitch and guide rails, as shown in Fig. 2. The PAM type used is  

MAS-10-180N-AA-MC-O from FESTO Company. The range of working pressure of PAM is 

0-0.8 MPa, and the maximum output force is 630 N. The maximum contraction rate is 25%, 

and the maximum initial tension rate is 3%. The left PAM is fixed to the stretching platform 

and the right PAM is fixed to the step motor with a force sensor. The pressure gas from the air 

compressor is charged into the PAM through the filter regulator and the proportional valve. 

 

 
Fig. 2 Experimental system for determining the PAM model 

 

The hardware used in the experimental system is described in Table 1. 
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Table 1. Hardware used in the experiment 

Item Model Company 

PAM MAS-10-180N-AA-MC-O FESTO 

Force sensor TSH-200 METTLER TOLEDO 

Pressor sensor SDE1-D10-G2-W18-L-PU-M8 FESTO 

Proportional valve ITV0050-3ML SMC 

Computer IPC-610L ADVANTECH 

Data acquisition card PCI-6281 NI 

Junction box  SCB-68A NI 

 

Parameters identification 
For the MAS-10-180N-O-MC-O type of PAM, the initial length and the initial diameters were 

180 mm and 10 mm, respectively. Generally, different experimental methods with equal 

length, equal pressure or equal force are adopted to obtain the PAM model. In this paper, the 

equal pressure experimental method is adopted to identify the parameters of the PAM model. 

 

The equal pressure experiment is performed to obtain the PAM characteristic curve under the 

pressures from 0 to 6 bar with 13 different values. The proportional valve is used to ensure the 

pressure stability. The motor driver is used to control the step motor and drive a screw to 

achieve the stretch or contraction of PAM. During the experiment, the pulse number of the 

motor was set so as to control the stretch/contraction rate at 0.2 mm/s, which implies that the 

PAM stretch/contract length will reach 1 mm every 5 s. 1000 data points are collected within 

1 s after each 5 s delay for obtaining stable data of PAM pressure and output force.  

 

The experimental process includes adjusting the experimental device, determining the 

boundary values, unloading test, load testing and saving the collected data.  

 

In order to obtain sufficient data for parameters identification and PAM modelling, the stretch 

and contract experiment was repeated five times at each constant pressure. 13 characteristic 

curves of the 5-groups data were obtained, as shown in Fig. 3. The curves show that the equal 

pressure characteristic curve of PAM has directivity, i.e., PAM exhibits similar mechanical 

properties during the process of loading and unloading, and the relationship between the 

output force and the shrinkage rate is nonlinear. 

 

According to the rate of change of force attenuation, the contraction rate of PAM MAS-10-

180N-AA-MC-O was determined as μ = 0.3. Thus, the PAM model was determined as: 

      0.3
245.8 109 3.216 3.442 255.6 13.18F p p p e





            . (3) 

 

Model validation 
The experimental mathematical model of PAM MAS-10-180N-AA-MC-O is based on the 

static isobaric pressure experiments and the parameters identification method. Whether the 

experimental model of PAM is correct has to be verified. Changing the gas pressure,  

the loading and unloading PAM experiments are performed. The gas pressure is set to 2 bar, 3 

bar, 4.5 bar and 6 bar, respectively. The loading and unloading isobaric experiments are 

performed. The PAM axial force is calculated by the experimental model and compared with 

the experimental data to verify the correctness of the muscle model. At the same time,  

the PAM force of the experimental model is compared with the force by the theoretical model.  

As shown in Fig. 4, the loaded experimental data is in blue color, and the unloading 
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experimental data is the red curve. The purple curve is the PAM force calculated by the 

experimental model presented in this paper, and the green curve is the PAM force calculated 

by the Chou model. 
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Fig. 3 Isobaric feature test curves  
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Fig. 4 Force comparison between the experimental data (blue and red),  

the experimental model (purple) and the theoretical model (green) 

 

As can be seen in Fig. 4, the experimental model curve (purple) is very close to the loading 

data (blue) and the unloading (red) data. But the experimental model curve (purple) is quite 

different with the theoretical model curve (green). It is shown that the mathematical model of 

PAM by the experimental method can reflect the actual characteristics of PAM, and verify the 

correctness of the experimental modeling method. 
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Joint position and stiffness control simulation 

Control method 
Joints play very important role in the robot locomotion. In order to achieve high-speed 

locomotion of quadruped robot, it is necessary to control the position and stiffness of the joint. 

The forward-swing hip joint and the knee joint play a key role in jumping movement.  

In this paper, the position and stiffness synchronization control on the knee joint is performed 

by simulations. The conventional PID and BP neural network control methods are adopted. 

The simulation is performed to verify the effectiveness and control accuracy of the joint 

position and stiffness synchronization control method. In order to contrast the control 

precision, the same PID controller parameters are used in two methods. 

 

Calcultion model I of joint position and stiffness

PAM 

force

model

PAM 

force

model

Dynamic model

Kinematics model 

Kinematics model 

     Dynamic model
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Fig. 5 System schematics of joint stiffness and position synchronization control 

 

Kinematics and dynamics 
The knee joint model is shown in Fig. 6: τ is the joint driving torque; m1 and m2 are the 

equivalent mass of the knee joint and the external load, respectively; l1 and l2 are the distances 

from the point of the joint rotating center to the center point C1 of the knee equivalent mass 

and to the point C2, respectively; F1 and F2 are the axial output forces of PAMs, and d1 and d2 

are the arm lengths of the corresponding forces. 

 

According to geometry relationship, the kinematics model of knee joint can be obtained as: 

     

     

2 2

1

2 2

2

sin cos

sin cos

u d

u d

L H r r r L L

L H r r r L L

 

 

     

     

 (4) 

 

   

 

   

1
2 2

2
2 2

cos sin
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r H r
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 

 

 

 



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
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 (5) 
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Fig. 6 Knee joint mechanism model 

 

The expected driving torque of the knee joint can be derived as: 

   2 2

1 1 2 2 1 1 2 2= sin( 6 )e J m l m l c m l m l g          ,  (6) 

where J is the equivalent moment of inertia of the leg mechanism and c is the joint damping 

coefficient. 

 

The actual driving torque of the knee joint can be derived by the torque balance equation.  

The generalized forces acting on the knee joint mechanism are: PAM output forces F1 and F2, 

joint driving torque τ, knee equivalent gravity m1g, external load equivalent gravity m2g.  

 

Then, the joint driving torque of the knee joint is:  

 1 1 2 2 2 2 1 1sin( 6 )ml m l g F d Fd       , (7) 

where F1 and F2 can be calculated by Eq. (3). 

 

The joint stiffness can be derived by taking a derivative of the driving torque with respect to 

the joint variable [14]: 

d

d
K




   (8) 

where K is joint stiffness, τ is joint torque vector and  is joint angular displacement. 

 

Table 2 presents the values of the parameters. 

 

Results and analysis 
Taking the knee joint as an example, a synchronization control simulation of the joint position 

and stiffness is conducted. Setting the desired joint position as a sine function and the desired 

stiffness as the constant value or step value, the conventional PID and BP control algorithms 

are adopted and the simulations are performed to compare the control effectiveness. The joint 

position and stiffness simulation results are shown in Fig. 7 and Fig. 8. 
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Table 2. Parameters 

Parameter, Unit Value 

PAM initial diameter D0, m 0.01 

PAM initial braid angle α0, ° 25 

Initial length of rubber balloon L0, m 0.18 

Length sum of connectors Lu + Ld, m 0.19 

Equivalent joint length H, m 0.37 

Equivalent joint radius r, m 0.03 

Equivalent mass of knee joint m1, kg 0.5 

External load equivalent mass m2, kg 0.5 

Distance l1, m 0.1 

Distance l2, m 0.2 

Equivalent moment of inertia J, kg·m2 0.02 

Joint damping coefficient c, N·s/m 0.015 
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Fig. 7 Control results on the joint position and stiffness 

 

Fig. 7 shows the simulation results of the joint position and stiffness by using the 

conventional PID and BP control methods and under different desired joint stiffness, which 

are constant value or step stiffness. Fig. 7(a) presents the simulation results concerning the 

constant stiffness and Fig. 7(b) presents the simulation results concerning the step stiffness, 

both obtained by the conventional PID control method. Fig. 7(c) presents the simulation 

results concerning the constant stiffness and Fig. 7(d) presents the simulation results 

concerning the step stiffness, both obtained by the BP control method. 
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Fig. 8 Error curve of the joint position and stiffness 

 

Fig. 8 shows the error curve of the joint position and stiffness by using the conventional  

PID and BP control methods under different desired joint stiffness. Fig. 8(a) shows that the 

desired joint stiffness is a constant value, and Fig. 8(b) shows that the desired joint stiffness is 

a step value. The PID and the BP control methods are adopted and the tracking errors of the 

joint position are compared. When the PID control method is adopted, under two kinds of the 

desired stiffness, the tracking errors of the joint position are large. When the BP control 

method is adopted, the tracking errors of the joint position are all small under two kinds of the 

desired stiffness. The tracking errors of the joint stiffness are shown in Fig. 8(c) concerning 

the constant stiffness and in Fig. 8(d) concerning the step stiffness. Both the PID and the  

BP control methods are compared. The joint stiffness adjustment time by PID is relatively 

longer than that of the BP control method. The tracking errors of joint stiffness by the PID and 

the BP control methods are compared. 

 

The simulation results show that the joint stiffness varying will cause joint position 

fluctuations, and the joint position changing will cause joint stiffness fluctuations. The joint 

position and stiffness are coupled with each other. 

 

Conclusions 
A musculoskeletal leg driven by PAMs is presented. The experimental method is presented to 

obtain an accurate force model of PAM closer to the real situation. Static equal pressure 

experiments are performed and the curve fitting method is adopted to identify the model 

parameters. The correctness of the PAM modeling method presented in this paper is verified 

by simulation. For the musculoskeletal leg, synchronous control on the position and stiffness 

of the knee joint is performed to improve the flexibility for high-speed movement.  

The PID and BP control algorithms are adopted for comparison. The simulation results show 

that the BP control algorithm could achieve better control accuracy. 
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