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Abstract: In this paper, a new numerical method for solving Volterra’s population growth
model is presented. Volterra’s population growth model is a nonlinear integro-differential
equation. In this method, by introducing the combination of fourth kind of Chebyshev
polynomials and Block-pulse functions, approximate solution is presented. To do this, at
first the interval of equation is divided into small sub-intervals, then approximate solution is
obtained for each sub-interval. In each sub-interval, approximate solution is assumed based
on introduced combination function with unknown coefficients. In order to calculate unknown
coefficients, we imply collocation method with Gauss-Chebyshev points. Finally, the solution
of equation is obtained as the sum of solutions at all sub-intervals. Also, it has been shown
that upper bound error of approximate solution is O

(
m−r
√

N

)
. It means that by increasing m

and N, error will decrease. At the end, the comparison of numerical results with some existing
ones, shows high accuracy of this method.

Keywords: Integro-differential equation, Chebyshev polynomials, Block-pulse functions,
Gauss-Chebyshev points, Hybrid function.

Introduction
Nowadays, much attention has been pointed to integral equations. This is because the most
practical problems in science lead to these equations. One of the problems existing in the
population growth study is Volterra equation of population growth. The following equation has
been introduced by Volterra for population growth model:

d p
dt̂

= ap−bp2− cp
∫ t̂

0
p(x)dx, p(0) = p0, (1)

where a > 0 is the birth rate coefficient, b > 0 is the crowding coefficient, c > 0 is the toxicity
factor, p0 is the initial population and p(t̂) is the population at time t̂.

Likewise, cp
∫ t̂

0 p(x)dx includes the accumulated toxicity when the time goes to zero, respec-
tively [17, 18].
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However, using the following variables:

t =
t̂
b
c

, u =
p
a
b

,

the following equation is obtained from Eq. (1):

κ
du
dt

= u−u2−u
∫ t

0
u(x)dx, u(0) = u0, (2)

where κ =
c

ab
is predictive dimensionless parameter and u(t) is the population at t. As far as the

environment permits, the systems population tends to increase. The majority of the population
undergoes a dynamic process to reach a balance point. The number of population increases in a
sensitive balance point which is the result of some limited factors. These factors include:

• Nutritional components;
• Crowding;
• Competition;
• Increasing the concentration of waste.

For more details see [19].

In addition, if the event of sudden deaths such as deaths arising from earthquakes, it is called the
collapse of the population. Given that Eq. (2) has no analytical solutions, numerical methods
for solving it are highly regarded. Over the past two decades, several methods for the numerical
solution of this equation have been presented. To solve this equation, Euler and modified Euler,
Fourth order Runge-Kutta and Fehelberg Runge-Kutta methods were provided in 1997 [17].
These methods have high computational bulk to calculate the answer in one point. Another
approach based on Adomian decomposition method to solve the equation was presented by
Wazwaz [18]. Although the efficiency of these methods is simply further by increasing the
number of sentences series but both computational complexity and rounding error increase.
Also Adomian decomposition method compared with Sinc Galerkin method and showed the
Adomian decomposition method is more efficient and accurate in solving this equation [1].
The methods of singular perturbation [16], spectral [12–14] and radial basis functions [10]
used to solve this equation and also their sensitivity of growth for different values of κ , have
been examined. Hybrid functions used to solve this equation [6, 8]. The hybrid functions
(Block-pulse functions and Legendre polynomials) used to solve this equation [8]. Rational
pseudospectral method was proposed by Dehghan and co-workers in 2015 [2]. Kajani et al. also
introduced the multi-domain pseudospectral method to solve population growth equation [7].
By comparing the numerical result of the present method with some above mentioned methods,
accuracy and efficiency of the proposed method are shown.

In the following, at first the Block-pulse functions and fourth kind of Chebyshev polynomials
are presented and a combination of them is introduced. In Section 5 approximate solution to
the equation is provided by the combined functions. By substituting the combined function into
the Eq. (2), a system of nonlinear equations is achieved. In Section 6, an upper bound for error
of the approximate solution has been obtained. Finally, Section 7 shows numerical results and
a comparison with other methods.
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Fourth kind of Chebyshev polynomials
A Sturm-Liouville problem is an eigenvalue problem on the interval (−1,1) as follows:

− d
dx

(
p(x)

du
dx

)
+ q(x)u(x) = λw(x)u(x). (3)

By assuming p(x) = (1+ x)
1
2 (1− x)

3
2 , q(x) = 0 and w(x) = (1− x)

1
2 (1+ x)−

1
2 fourth kinds

of Chebyshev polynomials are obtained as follows:

wn(x) =
sin(n+ 1

2)θ

sin 1
2θ

, (4)

where x = cosθ . On the basis of Eq. (4) recurrence relations to them are:{
wn(x) = 2xwn−1(x)−wn−2(x), n = 2,3, . . . ,
w1(x) = 2x+ 1, w0(x) = 1.

(5)

This polynomials are particular type of Jacobi polynomials per α = 1/2 and β = −1/2:(
2n
n

)
wn(x) = 22nJ

( 1
2 ,− 1

2 )
n (x). (6)

Special cases of Jacobi polynomials have been used in many numerical methods [3, 11, 19].

The polynomials on the interval (−1,1) relative to the weight function

w(x) = (1− x)
1
2 (1+ x)

−1
2

are orthogonal and:∫ 1

−1
wi(x)w j(x)w(x)dx = πδi j, (7)

where δi j is the Kronecker function [9]. The roots of fourth type of Chebyshev polynomials of
degree m are shown with γi, so:

−1 < γ1 < γ2 < · · ·< γm < 1, (8)

and γi (i = 1,2, . . . ,m) are called fourth kind Gauss-Chebyshev points.
In this method Gauss-Chebyshev points will be used as collocation points subsequently.

Integral of fourth kind of Chebyshev polynomials
To solve population growth equation by the present method, the integrals of these polynomials
are needed which are obtained from the following equations:

If i = 2k,∫ x

−1
w2i(t)dt =

−1
2i

w0(x)−
1
4i

w2i−2(x)+
1

4i(2i+ 1)
w2i(x)+

1
2(2i+ 1)

w2i+1(x),∫ x

−1
w2i−1(t)dt =

−1
2i

w0(x)−
1

2(2i−1)
w2i−2(x)+

1
4i(2i−1)

w2i−1(x)+
1
4i

w2i(x)
(9)
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and if i = 2k−1,∫ x

−1
w2i(t)dt =

1
2i

w0(x)−
1
4i

w2i−1(x)+
1

4i(2i+ 1)
w2i(x)+

1
2(2i+ 1)

w2i+1(x),∫ x

−1
w2i−1(t)dt =

1
2i

w0(x)−
1

2(2i−1)
w2i−2(x)+

1
4i(2i−1)

w2i−1(x)+
1
4i

w2i(x)
(10)

and for n = 0,1:∫ x

−1
w0(t)dt =

1
2

w0(x)+
1
2

w1(x),∫ x

−1
w1(t)dt =

1
4

w1(x)+
1
4

w2(x).
(11)

Proof. The Proof is clear and hence omitted.

Block-pulse functions
Block-pulse functions with bi(λ ), i = 1, . . . ,N on the interval [0, T ) are shown as follows:

bi(λ ) =

 1,
(i−1)T

N
≤ λ <

iT
N

,

0, otherwise.
(12)

These functions have three properties:

• disjointness;
• orthogonality;
• completeness.

These properties make use of these functions, easy operations and produce satisfactory approx-
imations [5].

Hybrid functions
Hybrid functions of fourth kind of Chebyshev and block-pulse function with hi, j(t) as shown
for i = 1, . . . ,N , j = 0, . . . ,M−1 are as follows:

hi, j(t) =


√

2T
N w j(

2N
T t−2i+ 1),

(i−1)T
N

≤ t <
iT
N

,

0, otherwise.

(13)

Likewise, integral of hi, j(t) for x ∈
[
(i−1)T

N
,
iT
N

]
from the equation above is obtained as

follows:

∫ x

−1
hi, j(t)dt =


√

2T
N

∫ x

−1
w j(

2N
T

t−2i+ 1)dt,
(i−1)T

N
≤ t <

iT
N

,

0, otherwise.

(14)

Eqs. (13) and (14) can be presented in terms of Chebyshev polynomials via Eqs. (9)-(11).
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Approximation function
To solve the Volterra integro-differential equation of population growth Eq. (2) on time interval

[0, T ], at first the interval is divided into N sub-interval as Ii =

[
(i−1)T

N
,
iT
N

]
, i = 1, . . . ,N

then the approximation solution in each sub-interval is calculated. Finally, the sum of provided
solutions in each sub-interval is presented as approximate solution of equation. For this reason,
approximate solution of equation on i-th sub-interval is shown by ûi(x). At first, the derivative
of approximate solution is approximated as follows:

du(x)
dx

∣∣∣∣
Ii

' dûi(x)
dx

=
m−1

∑
j=0

hi, j(x)ci j, (15)

where hi, j is introduced as hybrid function in Eq. (13) and ci, j is unknown coefficient. Needless
to stay, the approximate solution ûi, j is obtained by calculating the integral of the above equation

on interval
[
(i−1)T

N
, x
]

shown in the following equation:

u(x)|Ii
' ûi(x) =

m−1

∑
j=0

(∫ x

(i−1)T
N

hi, j(t)dtci j

)
+ ûi

(
(i−1)T

N

)
, (16)

where

ûi

(
(i−1)T

N

)
=


u0, i = 1,

ûi−1

(
(i−1)T

N

)
, i = 2, . . . ,N

(17)

and u0 is the initial condition from Eq. (2). Also, integral of approximation function of Eq. (16)
is obtained as follows:∫ x

0
ûi(t)dt =

∫ x

0

m−1

∑
j=0

(∫ t

(i−1)T
N

hi, j(s)ds
)

ci jdt + xûi

(
(i−1)T

N

)
. (18)

With an approximation function ûi, j placed in Eq. (2) we have:

κ
dûi(x)

dx
' ûi(x)− (ûi(x))2− ûi(x)

∫ x

0
ûi(t)dt, x ∈ Ii. (19)

By using the Eqs. (15)-(18) and collocation method with collocation point xi
k we will have:

xi
k =

2N
k

(
γk−

iT
N

)
+ 1, k = 1, . . . ,m,

where γk is Gauss-Chebyshev point introduced in Eq. (8), the m×m nonlinear system of alge-
braic equations is achieved as follows:

κ
dû(xi

k)

dx
− ûi(xi

k)+ (ûi
(
xi

k)
)2
+ ûi(xi

k)
∫ xi

k

0
ûi(t)dt = 0, k = 1, . . . ,m. (20)

By solving the above system with fsolve function of the Maple software, coefficients ci, j in
i-th sub-interval are calculated. By applying this procedure on all sub-intervals approximate
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solution is obtained in each sub-interval. Finally, approximate solution of Eq. (2) is obtained as
follows:

û(x) '
N

∑
i=1

ûi(x). (21)

Error analysis
In this section, the upper bound of approximation function will be obtained.

Theorem. Suppose that u ∈ Hr
χ(α ,β ),A

(A) (r is a non-negative integer) α = 1/2 and β = −1/2
then:

‖L(−1,1)
m u−u‖L2 ≤ cm−r

(∫ 1

−1
(1− t)r+ 1

2 (1+ t)r− 1
2

(
dru(t)

dtr

)2

dt

) 1
2

, (22)

where L(−1,1)
m u = û(t), c(α ,β ) is a constant dependent on α , β and Hr

χ(α ,β ),A
(A) is the weighted

Sobolev space on the interval A with weight function χ (α ,β ).

Proof. By considering Eq. (6) fourth kinds of Chebyshev polynomials are obtained from Jacobi
polynomials. Therefore, by assuming α = 1/2, β = −1/2 and theorem (4.3) of [4], we have:

‖LG,m,α ,β u−u‖
χ(γ ,δ ) ≤ cα ,β (m(m+α +β ))−

r
2 |u|r,χ(α ,β ),A, (23)

where m is the degree of polynomial and LG,m,α ,β u provides approximation function of Jacobi
polynomials. And semi-norm in Eq. (23) is as follows:

|u|r,χ(α ,β ),A = ‖∂ r
t u‖

χ(α+r,β+r) =

(∫
A

x(α+r,β+r)
(

∂ ru
∂ t

)2

dt

) 1
2

(24)

and χ (α+r,β+r) is the weight function in this method as follows:

χ
( 1

2+r,− 1
2+r) = (1+ t)r− 1

2 (1− t)r+ 1
2 ,

by substituting Eq. (24) into Eq. (23) and using α = γ = 1/2 and β = δ =−1/2, Eq. (22) will
be obtained.

It can be stated that upper bound of the error of the approximation function is o
(

m−r
√

N

)
.

This means that error decreases by increasing m. On the other hand by considering the algorithm

in this way the upper bound of the error in the i-th sub-interval
[
(i−1)T

N
,
iT
N

]
according to

Eq. (2) is obtained as follows:

‖ûi(x)−u‖≤c(α ,β )m−r

(∫ iT
N

(i−1)T
N

(
t−(i−1)T

N

)r+ 1
2
(

iT
N
−t
)r− 1

2
(

dru(t)
dtr

)2

dt

) 1
2

. (25)
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By using the mean value theorem for integral in Eq. (25), we get:

iT
N∫

(i−1)T
N

(
t− (i−1)T

N

)r+ 1
2
(

iT
N
− t
)r− 1

2
(

dru(t)
dtr

)2

dt ≤Mi
T
N

,

where Mi is defined by the following equation:

Mi = max
(i−1)T

N ≤t≤ iT
N

(
t− (i−1)T

N

)r+ 1
2
(

iT
N
− t
)r− 1

2
(

dru(t)
dtr

)2

,

then:

‖ûi(x)−u‖ ≤ c(α ,β )m−r

√
MiT

N
. (26)

It means that, the upper bound of the error in this sub-interval is o
(

m−r
√

N

)
. Therefore, it can be

said that by increasing m, N the error and accuracy will be decreased and increased, respectively.
Obviously, this will be seen in the numerical results of the next section.

Numerical results
In this section integro-differential of population growth is solved by using the proposed method
and the obtained results are compared with other methods. Efficiency and accuracy of this
method are clearly specified by comparing numerical results with other methods. Consider the
following population growth equation:

κ
du
dt

= u−u2−u
∫ t

0
u(x)dx, u(0) = 0.1 . (27)

This equation is solved for different values of κ . To solve this equation by present method,
Maple 18 software and PC core-i7 2.4 GHZ are used. Note that the maximum value of u
appeared with umax, can be accurately calculated by the following equation [17]:

umax = 1+κ ln
(

κ

1+κ−u0

)
. (28)

First, Eq. (27) with κ = 0.02,0.04,0.1,0.2,0.5 is solved.

The absolute error of umax for different values of κ is presented in Table 1.

Table 1. Absolute error of umax for different values of κ

κ m N Absolute error of umax
0.02 15 30 3.28×10−8

0.04 15 30 1.43×10−12

0.1 15 30 2.23×10−18

0.2 15 30 5.52×10−24

0.5 15 30 6.17×10−27
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In Table 2 in terms of accuracy, the present method is compared with methods from [2, 6, 11,
15, 18].

Table 2. A comparison of absolute error of umax obtained by the present method for m = 15,
N = 30 with some other methods by different values of κ

κ Present method [6] [18] [2] [15] [11]
0.02 3.28×10−8 4.30×10−3 1.96×10−2 3.72×10−7 7.72×10−7 6.95×10−6

0.04 1.43×10−12 4.56×10−3 1.25×10−2 1.43×10−8 7.83×10−7 4.15×10−5

0.1 2.33×10−18 5.27×10−3 4.63×10−3 1.07×10−10 5.91×10−7 3.93×10−8

0.2 5.52×10−24 3.06×10−3 1.14×10−3 3.53×10−11 6.82×10−7 8.16×10−6

0.5 6.17×10−27 2.49×10−3 9.21×10−5 2.44×10−9 4.91×10−7 1.19×10−7

It can be seen from Table 2 that the method presented in this paper is more accurate than other
methods. Tables 3 and 4 show that by increasing m and N the absolute error decreases as
expected.

Table 3. Absolute error of umax for κ = 0.02 by increasing m, N

κ N m Absolute error of umax
0.02 20 8 1.41×10−3

0.02 20 10 1.64×10−4

0.02 20 12 2.23×10−6

0.02 20 15 7.05×10−7

0.02 10 12 6.77×10−5

0.02 15 12 7.70×10−6

0.02 20 12 2.71×10−6

0.02 25 12 2.06×10−7

Table 4. Absolute error of umax for κ = 0.5 by increasing m, N

κ N m Absolute error of umax
0.5 20 8 5.87×10−15

0.5 20 10 3.44×10−18

0.5 20 12 1.98×10−21

0.5 20 15 6.17×10−27

0.5 10 10 2.46×10−15

0.5 15 10 3.71×10−17

0.5 20 10 3.44×10−18

0.5 25 10 3.82×10−19

In addition Fig. 1 and Fig. 2 show that by increasing m, N the absolute error of umax decreases.
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(a) for m = 12 by increasing N (b) for N = 20 by increasing m

Fig. 1 The graph of absolute error of umax for κ = 0.02

(a) for m = 10 by increasing N (b) for N = 10 by increasing m

Fig. 2 The graph of absolute error of umax for κ = 0.5

Finally, in Fig. 3 the graph of approximate solution of u(t) is presented. As noted above, one
feature of this method is the ability to solve the equation on large domain, so the equation has
been solved on [0, 20] and its graph is shown in Fig. 3.
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(a) for κ = 0.04 (b) for κ = 0.5

Fig. 3 The graph of approximate solution of u(t)

Conclusion
In this study, a new numerical method, hybrid function of the fourth kind Chebyshev polyno-
mials and Block-Pulse functions was proposed to solve Volterra’s population growth model.
An important feature of this method is its high accuracy. Another advantage of our method is
the capability of solving this equation on large domain.

Our scheme has been compared to several methods presented in the literature. The comparison
of the results showed that the suggested method is more accurate than the other methods.
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