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Abstract: Brain electrical activity commonly represented by the Electroencephalogram 

(EEG), due to its miniscule amplitude (on the order of a hundred microvolts), is often 

contaminated with various artifacts. Independent Component Analysis (ICA) may be a useful 

technique to reduce some artifacts prior analyzing EEG. Present report discusses use of 

kurtosis to determine the threshold for detecting the artifacts-related independent components. 

Kurtosis may represent how peaked or how flat the artifacts that affect a signal are compared 

to the normal behavior of the original signal. Two statistical approaches were used for the 

kurtosis-based threshold selection: the Z-score and the confidence interval. The independent 

components determined as artifact-related may be either set to zero for the greater artifact 

suppression or scaled down for the reduced effect on the artifact-free regions of EEG.  

Based on the observed results, we may conclude that the present technique may be used for 

ocular artifacts reduction in EEG. 

 

Keywords: Electroencephalogram, Independent Component Analysis (ICA), Kurtosis, 

Electro-ocular artifacts. 

 

Introduction 
Electroencephalogram (EEG) signals represent neural activities of the human brain. EEG is 

important for a number of medical applications including studies of epilepsy, trauma, and 

biofeedback. Due to its low amplitude (on the order of hundred microvolts), EEG is highly 

sensitive to various artifacts, such as ocular, cardiac, muscle, electrode, power-line noise, and 

external device artifacts. To extract the original neural signal, these artifacts should often be 

significantly minimized. The aim of this report is to consider, perhaps, the most damaging EEG 

artifacts – the electro-ocular artifacts (EOG) originating from the muscular activity of eyes. 

 

The simplest and widely used method to minimize them is discarding the portions of EEG 

recording deemed as artifacts, based on exceeding a pre-determined threshold [8].  

This approach, however, has its limitations. Apart from the uncertainties involved in the 

threshold selection, discharging portions of EEG dimmed as artifactual may also remove 

important neurological features. Another widely used method proposed by Gratton and 

colleagues relies on the existence of dedicated channels containing electrooculography data [6]. 

However, such dedicated EOG channels are not always available in practice, especially for 

consumer-grade EEG systems, such as EPOC by Emotiv. Alternatively, Independent 

Component Analysis (ICA) was utilized by Makeig, Bell, Jung, and Sejnowski to reduce EOG 

artifacts [11, 14]. The authors adopted the “infomax” algorithm for evaluation of independent 

mailto:russelkazi@yahoo.com
mailto:gleb@lamar.edu


 INT. J. BIOAUTOMATION, 2017, 21(3), 251-260 
 

252 

components in EEG analysis. The EEG data can be viewed as a set of signals at the electrode 

sites that are mixtures of neuro-related and artifactual components. Blind separation methods 

(BSS) reduce mixture of neural and non-neural variables to components, such that they are, in 

some way, independent of each other [10, 13]. Other than “infomax” techniques were utilized 

for ICA-based EEG analysis. This project utilizes one of such techniques, “fast ICA” introduced 

by Hyvärinen [7], for the independent components determination. However, most of ICA-based 

EOG minimizations rely on the existence of dedicated oculographic channels. Additionally, 

ICA by itself may not provide a method for selecting the independent components for 

elimination. 

 

Joyce, Gorodnitsky, and Kutas [10] proposed a method where the artifactual components of 

EEG were identified manually for rejection. Javidi and Mandic [9] suggested identifying the 

artifactual component using the kurtosis value as a threshold. The purpose of this report is to 

explore two automatic procedures to identify and suppress the EOG artifacts of EEG,  

while not requiring EOG channels and utilizing the ICA. 

 

Materials and methods 

EEG acquisition and preprocessing 
EEG data used in the project were acquired in the Applied DSP laboratory, Electrical 

Engineering department, Lamar University. Recordings were performed and pre-processed 

using Advanced Neuro Technology’s (ANT, Netherlands) EEG acquisition system. A cap with 

32 EEG electrodes positioned according to the International 10-20 System was used. 

 

Due to their subtle amplitude, EEG data are often contaminated by different noise sources 

requiring preprocessing the signals first. DC offsets are often present in EEG. To minimize such 

an offset, a built-in MATLAB function ‘detrend’ was used. Spatial filtering is a technique 

minimizing surface currents in EEG that are produced by the neighboring channels. Common 

Average Reference (CAR) spatial filter for each electrode was applied. After that, Independent 

Component Analysis algorithm was implemented. 

 

The aim of present report was to reduce EOG components in EEG. Eye-blink artifacts affect – 

to some extend – most of EEG channels. However, frontal channels are most influenced by 

EOG; therefore, the EEG recording for Fp2 channel was selected for illustration. 

 

Independent component analysis 
ICA may perform somewhat better than other methods available for separating the independent 

components. In many practical uncorrelated situations, the signals would not be independent 

and are not easy to separate. The uncorrelated-ness itself would not be sufficient to screen out 

the artifacts. This is the reason that principal component analysis (PCA) may be not efficient 

for EEG artifacts separation. On the other hand, the ICA provides a method for artifacts removal 

where an accurate model of the process that generates the artifacts is not needed. Since the 

artifacts are usually independent from the rest of the signal, ICA is a promising technique for 

EEG artifact identification and removal [8]. 

 

Independent component analysis is a method that determines primary factors or components 

from the multivariate or multidimensional statistical data [8]. Let assume that the source signal 

 iS t  contains m variables and T observations. The observed signal  iY t  is a linear 

combination of the source signal and a mixing matrix W [8]: 
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   i ij

j

Y t W S t   (1) 

 

Un-mixing EEG data into components can be achieved through the following linear rotation 

[10]: 

 
1S =W X .  (2) 

 

Eq. (2) indicates that the EEG data X is rotated by the un-mixing matrix W 

−1 to produce the 

components of S. We observe that all quantities in (2) are matrices [10]. In this project,  

“fast ICA” MATLAB toolbox implementing the fast ICA algorithm [7] was used to estimate 

the independent components. 

 

Kurtosis 
The fourth order statistics – the kurtosis – is often employed in the ICA, while it may be used 

as a quantitative measure of the non-Gaussianity of random signals of the same type:  

either sub-Gaussian or super-Gaussian [8]. Kurtosis is defined as the standardized fourth central 

moment [5]: 
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Here, E{*} is the expectation operator, m is the mean, and σ  is the standard deviation  

of data [5]. 

 

For the normal distribution, the process would have a kurtosis value of 3. That is why k − 3 is 

often used, so that the reference normal distribution is described by a kurtosis of zero [5].  

In the zero-mean case, definition of kurtosis may be simplified as [8]: 

 

      
2
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The normalized kurtosis is defined as [8]: 

 

 

  

4

2
2

( ) 3
E x

k x

E x

  .  (5) 

 

The built-in MATLAB function “kurtosis” was used to estimate the kurtosis value  

for experimental data. 

 

Z-scores 
The standard deviation of a data set represents the dispersion of the samples around their mean. 

Assuming N samples, denoted as Yn, with the mean M, the standard deviation can be evaluated 

as [1]: 
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To normalize a set of data using the standard deviation, each data sample is divided by the 

standard deviation of the set. If the mean is subtracted from each sample prior this 

normalization, the result is known as Z-scores. Therefore, a set of N samples can be transformed 

into Z-scores as [1]: 

 

n
n

Y M
Z

S


 .  (7) 

 

The set of Z-scores has a mean of zero and a standard deviation of one. Therefore,  

Z-scores constitute a unit-free measure that can be used to compare observations of different 

units [1, 12]. 

 

Confidence interval 
The confidence interval is expressed by two numbers – the confidence limits – with the range 

in between that contains the values of the variable of interest with a certain level of confidence. 

The confidence level is often set to 95% indicating that “we may be 95% certain that the value 

is somewhere inside a 95% confidence interval” [2]. 

 

Assuming N observations, the confidence interval can be estimated as follows: 

 

1NCI x t
N


  .  (8) 

 

Here N – 1 is also the number of degrees of freedom. At 95% confidence level, the constant  

tN – 1 = 2.201 for N   30 and tN – 1 = 1.96 for N > 30. 

 

Artifactual component detection 
ICA may separate EEG signals into the original source signals as independent components 

(ICs). After that, artifactual sources may be identified and removed. In semi-automatic and 

automatic artifact removal methodologies, several classifications (markers) based on the 

statistical characteristics of the ICs are considered allowing for the detection of artifacts in EEG. 

Next, these characteristics are compared against the threshold values to determine whether the 

particular components should be rejected. In these methods, the IC kurtosis has been utilized to 

identify and minimize those artifacts. Artifact-free EEG typically have a near-zero kurtosis 

value, which may indicate a Gaussian distribution. On the other hand, with artifacts, such as 

EOG, EEG exhibits a more peaked distribution with a highly positive kurtosis value. Using this 

kurtosis-based approach, we aim to extract artifacts as independent sources from the original 

EEG [9]. 

 

Two methods will be implemented to detect the threshold value for kurtosis. 

 

Using Z-scores to determine the kurtosis threshold value 

Kurtosis is positive for “peaked” sample distributions that may represent EOG artifacts, 

although it is negative for “flat” distributions that are typical for noise. For finding artifactual 
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ICs (outlier components), the EEG distributions are normalized with respect to all ICs to result 

in the distribution with zero-mean and unit standard deviation (Z-score). The decision threshold 

may be expressed as the multiple of the standard deviation and is usually selected as 1.64 [3]. 

If an IC exceeds the rejection threshold, it will be set to zero [3]. 

 

Using confidence interval to determine the kurtosis threshold value 

The upper limit of the 95% confidence interval of the kurtosis of independent components will 

be used as the threshold. All the ICs with kurtosis exceeding the threshold are assumed to 

correspond to ocular artifacts and will be set to zero [4]. 

 

Results and discussion 
Fig. 1 illustrates one second (256 samples) of EEG of the Fp2 channel. DC offsets were 

eliminated by the built-in MATLAB ‘detrend’ function and the CAR spatial filter was applied. 

 

 
Fig. 1 A sample EEG fragment for Fp2 channel containing an EOG artifact 

 

The EEG channel Fp2 was selected as one of the most affected by the ocular artifacts.  

The fragment depicted in Fig. 1 includes such an artifact from approximately 750 to 900 

milliseconds. 

 

Next, the ICs were evaluated by the “fast ICA” MATLAB toolbox resulting in 31 ICs.  

Fig. 2 illustrates the topographic maps of ICs estimated and plotted by EEGLAB. 

 

Z-scores of kurtosis for the ICs were evaluated next for the sample EEG and are illustrated in 

Table 1. If the magnitude of Z-score of any IC exceeded 1.64 (selected as the threshold),  

this component was assumed as related to an ocular artifact and will be set to zero.  

The Z-scores exceeding the threshold are indicated by the red color in Table 1. 

 

Alternatively, utilizing the confidence interval-based approach, the following quantities were 

evaluated for the kurtosis: sample mean = 7.672; sample standard deviation = 3.277;  

the confidence interval: 7.672 ± 1.153; upper confidence level (the threshold for the CI-based 

decision): 8.83. Therefore, the ICs, for which the kurtosis exceeds the threshold of 8.83,  

were assumed as related to artifacts, indicated by the red color in Table 1, and will be set to 

zero. 
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Fig. 2 Topographic maps of Independent Components evaluated for the sample EEG 

 

Table 1. Z-scores of kurtosis and CI-based decisions  

for different ICs evaluated for the sample EEG 

IC 

number 
1 2 3 4 5 6 7 8 9 10  

Kurtosis 10.4612 14.985 11.2541 16.097 9.0375 10.0066 8.6133 8.981 9.9804 12.1592  

Z-score 0.851 2.231 1.093 2.571 0.417 0.712 0.287 0.399 0.704 1.369  

CI-based yes yes yes yes yes yes no yes yes yes  

IC 

number 
11 12 13 14 15 16 17 18 19 20  

Kurtosis 8.7642 8.8146 7.3491 6.6133 5.9161 6.8611 10.4211 8.8412 7.0169 5.5034  

Z-score 0.333 0.349 -0.099 -0.323 -0.536 -0.247 0.839 0.357 -0.1999 -0.662  

CI-based no no no no no no yes yes no no  

IC 

number 
21 22 23 24 25 26 27 28 29 30 31 

Kurtosis 5.7182 5.4632 6.7481 4.8235 4.6006 4.4669 4.601 3.848 4.2358 2.6864 2.9654 

Z-score -0.596 -0.674 -0.282 -0.869 -0.937 -0.978 -0.937 -1.167 -1.049 -1.521 -1.436 

CI-based no no no no no no no no no no no 

 

We observe in Table 1 that the second and fourth ICs’ Z-scores are 2.231 and 2.571.  

Since they exceed the threshold (of 1.64), we assume that these components predominantly 

represent EOG artifacts and, therefore, should be set to zero. On the other hand, using the 

confident interval-based approach, the components 1-6, 8-10, 17, and 18 have kurtosis 

exceeding the threshold (of 8.83) and are indicated for removal. 

 

Fig. 3 illustrates the result of the artifact reduction using both methods: based on Z-score and 

on the confidence interval. The original EEG fragment is also shown as the reference. 

 

We observe in Fig. 3 that both approaches lead to considerable reductions of the ocular artifact. 

On the other hand, we also observe that setting the ICs to zero affects the EEG signal outside 

the artifactual region, since the values of the signals before and after the artifact removal are 

1 2 3 4 5 6 7 8
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different, for instance, for the first 700 milliseconds of the fragment. Perhaps, the letter supports 

the conclusions of Castellanos and Makarov, who suggested that zeroing the ICs deemed 

artifactual may also affect neurological data [4]. Nevertheless, correlation coefficients 

evaluated between the original signal and the de-noised ones are 0.7335 and 0.5655 for the  

Z-score and CI-based methods, respectively. Therefore, we may conclude that the de-noised 

sequences are still somewhat related to the original signal (especially, when Z-scores  

were used). 

 
Fig. 3 A sample EEG fragment for Fp2 channel  

before and after EOG artifact reduction via ICs zeroing 

 

Alternatively, the artifact itself may be of interest. Fig. 4 presents the reconstructed EOG artifact 

superimposed on the original EEG fragment. Both Z-score and CI can be used for the artifacts 

reconstruction. Unlike previously, (results in Fig. 2), only the independent components deemed 

as artifactual were maintained, while discarding everything else. 

 

 
Fig. 4 A sample EEG fragment for Fp2 channel  

and the EOG artifact reconstructed via ICs zeroing 

 

Comparing the reconstructed EOG with the original EEG signal, we observe that both the 

artifact position and its magnitude were evaluated correctly, although the artifact-free region 

(before approximately 0.7 s) appears somewhat noisier than in the original EEG. 

 

To better understand the effects of artifact reduction, Power Spectral Density (PSD) estimates 

obtained via the Periodogram method are illustrated in Fig. 5 for the original EEG signal and 
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both de-noised versions. Before the analysis, the sequences were down-sampled by the factor 

3 to eliminate high-frequency noise. 

 

 
Fig. 5 Periodogram-based PSD estimates for a sample EEG fragment  

of channel Fp2 before and after EOG artifact reduction 

 

We observe in Fig. 5 that the most pronounced effect of the artifact reduction may be seen in 

the low-frequency components of the sample sequence. Therefore, we may hypothesize that the 

eye blink predominantly manifested itself in the 2-4 Hz range. On the other hand,  

the component of the original EEG that was evident at approximately 8 Hz was shifted in 

frequency to 10 Hz. Additionally, the “de-noised” sequences exhibit considerable amount of 

power at 21-23 Hz, while the original EEG does not. Also, more power is evident in higher 

frequency components (exceeding 30 Hz) after artifact reduction. Bearing in mind the tendency 

of non-parametric spectral estimators to produce biased results for short data sequences,  

the effects seen in Figure 3 should be only considered as an illustration. Yet, we may suggest 

that zeroing independent components may lead to redistribution of spectral power of  

the sequences being processed. 

 

As an alternative to zeroing, the independent components may be normalized, for instance, by 

the corresponding Z-scores. The results of such normalization are illustrated in Fig. 6 for the  

Z-score and CI-based techniques considered in this project. 

 

 
Fig. 6 A sample EEG fragment for Fp2 channel  

before and after EOG artifact reduction via ICs normalization 
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As seen in Fig. 6, normalization of Independent Components by the corresponding Z-score 

seems to produce less alteration in the artifact-free regions (up to 0.7 second time mark).  

The correlation coefficients evaluated between the original signal and the signals de-noised via 

the ICs normalization are 0.9329 and 0.8823 for the Z-score and CI-based methods, 

respectively. On the other hand, the ocular artifact suppression is less pronounced compared to 

the results depicted in Fig. 3 when the corresponding components were set to zero. 

 

Conclusion 
We discussed two robust and automated kurtosis-based methods of EEG artifactual components 

detection in conjunction with the Independent Components Analysis. Techniques based on both 

Z-score and confidence interval were capable for reducing ocular artifacts in EEG. On the other 

hand, zeroing independent components determined as artifact-related may also affect the 

artifact-free regions of EEG. However, scaling the corresponding independent components 

(instead of zeroing them) helps preserving the artifact-free portions of the original signal; 

although this approach diminishes the apparent artifact reduction capability. 

 

This tradeoff between the artifact reduction performance and the need to preserve the artifact-

free signal may be a factor limiting applications of ICA in artifacts minimization. On the other 

hand, EEG ocular artifacts are localized in time and, therefore, affect only relatively small 

portions of EEG recordings. Perhaps, applying the artifact reduction techniques only to the 

portions of the signal where artifacts are present may ease the above limitation. The latter may 

lead to a two-step artifact detection-minimization procedure, perhaps, applied with the variable-

length time window. 

 

Nevertheless, implementing Independent Component Analysis may be beneficial for the 

reduction of ocular artifacts in Electroencephalogram. 
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