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Abstract: The estimation of the Cumulative Distribution Function (CDF) of data sets of
random variables is a fundamental goal in the statistical modelling of extreme natural and
technological accidents. Various geophysical events such as drought, floods, avalanches and
heavy precipitation are a prerequisite for serious damage and economic losses, and therefore
the comprehensive knowledge of their risk of occurrence, repetition periods and return levels
is crucial for the planning and elaboration of mitigation strategies. The paper describes
step-by-step the derivation of the parameters of the Fréchet and Gumbel CDFs, which form
together with the Weibull one the Generalized Extreme Value (GEV) distribution family
and are widely used for statistical modelling of extreme events. Two methods for estimation
of the CDF-parameters are considered: least-square estimation and maximum-likelihood
estimation. The developed and freely-available source code, written in FORTRAN 90/95,
enhances the practical value of the presented work. The possibilities of the proposed approach
for climatological applications are demonstrated by examples with time series of point
measurements and gridded data sets.

Keywords: Fréchet and Gumbel distribution, CDF-parameters, Least-square estimation,
Maximum-likelihood estimation, Free source code.

Introduction
Estimating the type and parameters of the cumulative distribution function (CDF) of data set
of random variables is a fundamental goal in many fields in which the analysts are interested
in estimating the risk of occurrence of a particular event, for example, the probability of a
catastrophic accident (drought, floods, avalanche, breakdown of technological structures, etc.).

Due to the major damage and the consequent social and economic effects, the precipitation and
temperature extremes have received lots of attention from both governments and the public. Un-
derstanding of whether and how the frequency and magnitude of these extremes have changed
during the past several decades is not only the focus in hydrological, meteorological, climatic,
and the related studies, but also a crucial issue for the management of the associated risks. Prob-
ability distribution models are useful tools for the statistical description of heavy precipitation
and extreme high/low temperatures. However, how to choose an appropriate model for a spe-
cific study is still a matter of debate [19]. Many kinds of probability distributions are available
to investigate the climate extremes and, consequently, a significant number of publications are
dedicated to the estimation of their appropriateness for a description of the historical frequency
and the spatio-temporal variations of extreme events over the world (for a comprehensive review
see [20] and the references therein). Studies show that the applicability of different probability
distributions depends on the spatial and temporal differences in the considered domain. Gene-
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rally, there is a consensus that only one CDF with adequate performance under all conditions is
absent.

The main aim of this article is to present the applicability of two pragmatic, but at the same time
mathematically consistent, approaches for estimation of parameters of two concrete probability
distributions, rather then to asses the applicability of a whole group of CDFs over certain data
sets. The approach is based on the two most widely used methods – the least-squares estimation
(LSE) and the maximum-likelihood estimation (MLE). The straightforward procedure is very
suitable for preparing a computational program as the one proposed in this study. It is written
in FORTRAN 90/95 and is available to download free of charge.

Despite the importance of the issue, the existing literature appears very limited. One possible
reason is the barrier-free availability of front-end solutions in form of some software packages.
A similar problem, mainly from the theoretical point of view, is addressed in some articles.
Thus, the paper of Abbas and Yincai [1] deals with the estimation of scale parameter for Fréchet
distribution with known shape by means of MLE and probability weighted moment estimation.
The same authors consider in [2] MLE and LSE of the same distribution for example of data
set with lifetimes of technological items. Subject of other studies in this group are extreme
meteorological events: Vivekanandan [27] presents the methodology adopted in determination
of parameters of Gumbel and Fréchet distributions modelling the extreme rainfall for Fatehabad
and Tohana regions in India. Six different estimation procedures, including MLE and LSE are
used for determination of parameters of Gumbel CDF and one, the Order Statistics Approach,
for Fréchet. As far as these studies are dedicated on more specific issues, rather then the deriva-
tion of the parameters of the CDFs, key points of the latter problem are not addressed at all.
Thus, their applicability as guidance for solving real problems is limited. In contrast, the inte-
resting and useful study of Ghosh [11] is dedicated on the determination of the parameters of
the Weibull distribution and offers as well the corresponding source code. Our article closely
follows the clear and punctual style of the Ghosh’s one in the first section, but is focused on the
Fréchet and Gumbel CDFs, providing source code for all three distributions, members of the
GEV-family. The description of the step-by-step procedure, apart the availability of the source
code, according the authors’ opinion, is one of the strengths of the described work.

The paper is organized as follows. The description of the theoretical background is presented
in the first section. The second section is dedicated on the computational procedure and its
validation. Additionally, one of its possible applications is demonstrated with a data set of
annual maximum daily precipitation. The third section deals with the computation of different
return levels for time series of point measurements and gridded data set. Brief concluding
remarks and concise comments are presented in the last section.

Theoretical background
The Weibull distribution was proposed by the Swedish mathematician Weibull [28] for des-
cription of the life length of materials under fatigue and fracture loads. This distribution is
used extensively in the last decades for statistical modelling of extreme geophysical events as
well. It is a member of the Generalized Extreme Value (GEV) distribution family of continuous
probability distributions, including also Gumbel and Fréchet types [5].
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The Weibull CDF is described as:

Pf (x; m, x0, xu) := 1− exp
{
−
(

x− xu

x0

)m}
for x≥ xu, x0 > 0, m > 0, (1)

where x0, m and xu are defined as scale parameter, shape parameter and location parameter,
respectively.

If the value of m is higher, the distribution of the measured values is narrower and, subsequently,
its peak is higher. Different values of the shape parameter (the Weibull modulus) can have
noticeable effects on the behavior of the distribution and can complicate MLE when m is close
to 1. A change in the scale parameter x0 has the same influence on the distribution as a change
of the abscissa scale. Modifying the value of xu has the effect of sliding the distribution.

If, as a conservative approach, xu is assumed to be zero, the resulting distribution is known as
the two-parameter Weibull distribution:

Pf (x; m, x0) := 1− exp
{
−
(

x
x0

)m}
. (2)

The probability density function (PDF) of the two-parameter Weibull distribution is:

f (x; m, x0) :=
∂

∂x
Pf (x; m, x0) =

m
x0

(
x
x0

)m−1

exp
{
−
(

x
x0

)m}
. (3)

Fréchet distribution was introduced by French mathematician Fréchet [10] in 1927 as a possible
limit distribution of the largest order statistics. The Fréchet distribution has been used as a useful
method for modelling and analyzing several extreme events in the nature and technology. The
CDF, proposed by Fréchet, is described as:

Pf (x; m, x0, xu) := exp

{
−
(

x− xu

x0

)−m
}

for x≥ xu, x0 > 0, m > 0, (4)

where the meaning of the parameters x0, m and xu is the same as in the Weibull distribution.
After the conservative approach xu = 0, we get the two-parameter Fréchet distribution:

Pf (x; m, x0) := exp

{
−
(

x
x0

)−m
}

. (5)

The two-parameter Fréchet PDF is defined as:

f (x; m, x0) :=
∂

∂x
Pf (x; m, x0) =

m
x0

(
x
x0

)−m−1

exp

{
−
(

x
x0

)−m
}

. (6)

The Fréchet is also known as type 2 extreme value or the inverse Weibull, whereas the dis-
tribution of the negative of the Weibull random variable is a type 3 extreme value distribution.
The MLE and the LSE of the parameters of the inverse Weibull distribution have been discussed
by Calabria and Pulcini [4]. Implementation of the Fréchet distribution in various engineering
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applications have been reported in [14]. In meteorology, Zaharim et al. [30] use it for statistical
modelling of the wind characteristics.

The Gumbel distribution, known also as log-Weibull distribution or the double exponential
distribution, was proposed by the German mathematician Gumbel [12]. The Gumbel CDF is
described as:

Pf (x; x0, xu) := exp
{
−exp

{
−x− xu

x0

}}
. (7)

The PDF of Gumbel distribution is given as:

f (x; x0) :=
∂

∂x
Pf (x; m, x0) =

1
x0

exp
{
−x− xu

x0
− exp

{
−x− xu

x0

}}
. (8)

The absence of the scale parameter m, however, is not the main difference between the Gumbel
distribution and Weibull and Fréchet distributions. As far as

PWeibull
f (x = 0; x0) = lim

x→0
PFréchet

f (x; x0) = 0 (9)

the two-parameter Weibull and Fréchet distributions are completely sufficient in the common
case for description of positively definite quantities. By the Gumbel CDF however

PGumbel
f (x = 0; x0) =

1
e
≈ 0.37 (10)

and thus the Gumbel CDF is not applicable without location parameter.

Similarly to the previous two, the Gumbel CDF is used for many applications in the geophysical
sciences, for instance, description of wind gusts [8, 24]. Klein Tank et al. [18] observes the
application of this distribution for description of extreme weather events in climate change
context. Palutikof et al. [24] describes and reviews methods for calculation of extreme wind
speeds, including “classical” ones based on the GEV distribution. They find, that the Gumbel
CDF is the most commonly used distribution applied to a set of annual maxima.

Due to the reason pointed above, the subsequent discussion in this paper will be restricted to
the two- parameter Weibull and Fréchet distributions and the Gumbel’s one given by Eq. (7).

The parameters of the considered distributions can be estimated by several different meth-
ods, the subject of many publications (see, for instance, [11] and [24] and references therein).
Most widely used, however, are the least-square estimation of logarithmic transformed data and
maximum likelihood estimation, which will be addressed in the next subsections. The derivation
of the Weibull CDF-parameters is described in detail in [11] and thus the respective procedure
will be skipped.

Least-square estimation
The ordinary least-squares regression on appropriately transformed data is a standard approach
in regression analysis. The LSE method, applied herein, consists of linear regression with
ordinary least-squares of the logarithmic transformed data. In the case of Fréchet distribution,
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the twofold logarithmation of both sides of Eq. (5) leads to:

y(x) := − ln
{
− ln [Pf (x; m, x0)]

}
= −m lnx0 +m lnx. (11)

Similarly, for the Gumbel distribution:

y(x) := − ln
{
− ln [Pf (x; x0, xu)]

}
=

x− xu

x0
. (12)

Eq. (11) and Eq. (12) are linear models: of y(x) versus lnx in the first case (with a slope m
and a y-intercept −m lnx0), and of y(x) versus x in the second case (with a slope 1/x0 and a
y-intercept −xu/x0).

The probability, Pf , for a given x can be calculated from n measured data after ordering in
ascending order x1 ≤ x2 ≤ ·· · ≤ xn and obtaining the empirical estimation. These estimates
are known also as plotting positions [24]. Choosing plotting positions which lead to unbiased
quantile estimates is not straightforward, and the literature is large, with at least ten published
formulae [13]. Palutikof et al. [24] and Ghosh [11], however, recommend to use the following
unbiased estimator (see [29] for details):

Pf =
i

n+ 1
, (13)

where i is the rank of the ordered values of x. According to Ghosh [11], the above form gives
the minimum variance.

Substituting Eq. (13) in Eq. (11) and Eq. (12), we get correspondingly:

yi = − ln
[
− ln

(
i

n+ 1

)]
= −m lnx0 +m lnxi, (14)

yi = − ln
[
− ln

(
i

n+ 1

)]
=

xi− xu

x0
. (15)

In the case of the Fréchet distribution, the estimates of the slope and y-intercept using ordinary
least squares are:

m̂ =

n
n
∑

i=1
yi lnxi−

n
∑

i=1
yi

n
∑

i=1
lnxi

n
n
∑

i=1
ln2 xi−

(
n
∑

i=1
lnxi

)2 (16)

and subsequently

x̂0 = exp

{
1
n

(
n

∑
i=1

lnxi−
1
m̂

n

∑
i=1

yi

)}
. (17)
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In the case of the Gumbel distribution we get:

x̂0 =

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2

n
n
∑

i=1
yixi−

n
∑

i=1
yi

n
∑

i=1
xi

(18)

and subsequently

x̂u =
1
n

(
n

∑
i=1

xi− x̂0

n

∑
i=1

yi

)
. (19)

The relatively easy application of LSE determines its popularity. The method implementation as
unbiased and minimum variance estimator, implicitly assumes that the error in one measurement
is uncorrelated with the error in any other and the errors are normally distributed with zero mean
and constant variance. In the common case, however, the satisfaction of these conditions is not
guaranteed.

Maximum-likelihood estimation
The maximum-likelihood method provides a procedure for deriving the estimates of the consi-
dered distribution parameters directly. The MLE is a standard and widely adopted estimation
technique that can be applied to any statistical distribution. Hence its explanation can be found
in any statistical guidebook, as for instance [16], only the basics will be considered here.

Suppose that the given data set x1, x2, . . . , xn is a sample of independent and identically dis-
tributed observations, coming from any distribution with a PDF with unknown parameters
a1, a2, . . . , ak. The likelihood of obtaining a particular sample value xi may be assumed to
be proportional to the PDF at xi. Hence, the likelihood of obtaining n independent observations
x1, x2, . . . , xn is:

f (x1, x2, . . . , xn; a1, a2 . . . ak) = f (x1; a1, a2, . . . , ak) · · ·× f (xn; a1, a2, . . . , ak). (20)

If we look at this function from a different perspective by considering the data set x1, x2 . . . xn
to be fixed “parameters” of this function, whereas a1, a2 . . . ak will be the function’s variables
and allowed to vary freely; this function will be called the likelihood L :

L (x1, x2 . . . xn; a1, a2 . . . ak) := f (x1, x2 . . . xn; a1, a2 . . . ak) =
n

∏
i=1

f (xi; a1, a2 . . . ak) (21)

The maximum-likelihood estimator of the parameters a1, a2 . . . ak will then be the particular
values of each ai so that L in Eq. (21) or the probability of obtaining the data set is maximized.
Due to the multiplicative nature of L , it is generally more convenient to maximize the logarithm
of the likelihood function. Taking the logarithm of the Eq. (21) breaks down the product in
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additions, which are then maximized separately, as follows:

∂

∂a1
lnL (x1, x2, . . . , xn; a1, a2 . . . ak) = 0

. . .

∂

∂ak
lnL (x1, x2, . . . , xn; a1, a2, . . . , ak) = 0.

(22)

The likelihood function for Fréchet distribution can be obtained by substituting Eq. (6) in Eq. (21):

L (x1, x2, . . . , xn; m, x0) =
mn

xn
0

[(
x1

x0

)−1−m(x2

x0

)−1−m

. . .

(
xn

x0

)−1−m
]
×

exp

{
−
(

x1

x0

)−m
}

exp

{
−
(

x2

x0

)−m
}
. . .

exp

{
−
(

xn

x0

)−m
}
=

mn

xn
0

n

∏
i=1

(
xi

x0

)−1−m

×
n

∏
i=1

exp

{
−
(

xi

x0

)−m
}

.

(23)

Taking the logarithm of the both sides and rearranging the terms yields:

lnL (x1, x2, . . . , xn; m, x0) = n lnm−n lnx0− (m+ 1)
n

∑
i=1

ln
xi

x0
−

n

∑
i=1

(
xi

x0

)−m

. (24)

Taking the derivative of lnL (x1, x2, . . . , xn; m, x0) with respect to x0 equating it to 0, we get:

xm
0 =

n
n
∑

i=1
x−m

i

. (25)

Similarly, equating the derivative of lnL (x1, x2, . . . , xn; m, x0) with respect to m to 0 yields:

n
m
+ n lnx0−

n

∑
i=1

lnxi +
n

∑
i=1

(
xi

x0

)−m

ln
xi

x0
= 0. (26)

Substituting Eq. (25) in Eq. (26), we get finally:

n
m
−

n

∑
i=1

lnxi +

n
n
∑

i=1
x−m

i lnxi

n
∑

i=1
x−m

i

= 0. (27)

The unknown parameters x0 and xu of the Gumbel distribution can be found in a similar way.

27



INT. J. BIOAUTOMATION, 2018, 22(1), 21-38 doi: 10.7546/ijba.2018.22.1.21-38

Thus, after substituting Eq. (8) in Eq. (21), the likelihood function can be written as:

L (x1, x2, . . . , xn; x0, xu) = exp
{
−x1− xu

x0
− exp

{
−x1− xu

x0

}}
×

exp
{
−x2− xu

x0
− exp

{
−x2− xu

x0

}}
×

. . .

exp
{
−xn− xu

x0
− exp

{
−xn− xu

x0

}}
=

n

∏
i=1

exp
{
−xi− xu

x0
− exp

{
−xi− xu

x0

}}
.

(28)

Taking the logarithm of both sides and accounting that x̄ :=
1
n

n
∑

i=1
xi,

lnL (x1, x2, . . . , xn; x0, xu) = −n lnx0−
1
x0

n

∑
i=1

(xi− xu)−
n

∑
i=1

exp
{
−xi− xu

x0

}
. (29)

Taking the derivative of lnL (x1, x2 . . . xn; x0, xu) with respect to x0 equating it to 0, we get:

− n
x0

+
1
x2

0

n

∑
i=1

(xi− xu)−
1
x2

0

n

∑
i=1

(xi− xu)exp
{
−xi− xu

x0

}
= 0. (30)

Similarly, equating the derivative of lnL (x1,x2, . . . , xn;x0,xu) with respect to xu to 0 yields:

n
x0
− 1

x0

n

∑
i=1

exp
{
−xi− xu

x0

}
= 0, (31)

which can be rewritten as:

xu = x0 ln
n

n
∑

i=1
exp
{
− xi

x0

} . (32)

Substituting Eq. (32) in Eq. (30), after rearranging the terms, we get the expression for x0:

x̄− x0−

n
∑

i=1
xi exp

{
− xi

x0

}
n
∑

i=1
exp
{
− xi

x0

} = 0. (33)

Eq. (27) and Eq. (33) are equations with respect to m and x0 correspondingly which roots can be
found numerically with different methods (see, for instance, [26]). According to the Newton-
Raphson iterative method, for example, the recurrence relation between the ith and (i+ 1)th
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approximation of the root of the equation is:

zk+1 = zk−
φ ′(z)
φ (z)

, (34)

where φ (z) is the function of the left-hand side of Eq. (27) or Eq. (33) and z is m or x0. Due to
two reasons, this method is appropriate for the considered problem. First, it is very powerful:
it converges quadratically. The number of significant digits approximately doubles at each step
near the root [25]. Second, and most important, the derivative φ ′(z) can be obtained analytically.
Thus, for the Fréchet distribution we have:

φ
′(m) = − n

m2 + n
∂

∂m

n
n
∑

i=1
x−m

i lnxi

n
∑

i=1
x−m

i

(35)

or

φ
′(m) = − n

m2 + n

(
n
∑

i=1
x−m

i lnxi

)2

−
n
∑

i=1
x−m

i ln2 xi
n
∑

i=1
x−m

i(
n
∑

i=1
x−m

i

)2 . (36)

Substituting Eq. (36) in Eq. (34) we get finally:

mk+1 = mk−

1
mk
−

n
∑

i=1
lnxi

n
+

n
∑

i=1
x−mk

i lnxi

n
∑

i=1
x−mk

i

− 1
m2

k
+

(
n
∑

i=1
x−mk

i lnxi

)2

−
n
∑

i=1
x−mk

i ln2 xi
n
∑

i=1
x−mk

i(
n
∑

i=1
x−mk

i

)2

. (37)

Similarly, for the case of the Gumbel distribution:

φ
′(x0) = −1− ∂

∂x0

n
∑

i=1
xi exp

{
− xi

x0

}
n
∑

i=1
exp
{
− xi

x0

} (38)

or

φ
′(x0) = −1−

n
∑

i=1
x2

i exp
{
− xi

x0

}
n
∑

i=1
exp
{
− xi

x0

}
−
(

n
∑

i=1
xi exp

{
− xi

x0

})2

x2
0

(
n
∑

i=1
exp
{
− xi

x0

})2 . (39)
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Substituting Eq. (39) in Eq. (34) we get finally:

x0 k+1 = x0 k +

x̄− x0 k−

n
∑

i=1
xi exp

{
− xi

x0 k

}
n
∑

i=1
exp
{
− xi

x0 k

}

1+

n
∑

i=1
x2

i exp
{
− xi

x0 k

}
n
∑

i=1
exp
{
− xi

x0 k

}
−
(

n
∑

i=1
xi exp

{
− xi

x0 k

})2

x2
0 k

(
n
∑

i=1
exp
{
− xi

x0 k

})2

. (40)

From an initial guess of m in Eq. (37) and x0 in Eq. (40), the value of Fréchet modulus and the
Gumbel scale parameter can be estimated when the difference between subsequent iterations is
less than a predefined tolerance value.

Small parts for the described above procedure can be found in some reports. Thus, for example,
Eq. (3) in the [23] is equivalent of Eq. (29), but explicit expressions for m as in Eq. (37) and
x0 as in Eq. (40), which are the final outcome and are most important in pragmatic sense, are
missing. Under the many strengths of the MLE can be emphasized its consistency and the fact,
that the method, in contrast to the LSE, does not rely on any empirical functions as Eq. (13).
A certain drawback is, at least from a practical point of view, the complicated procedure of
estimation of the CDF-parameters.

Program implementation, validation and demonstration
The computer program has been written in FORTRAN 90/95 and is available upon request.
It consists of three identical sections, one for each distribution (Weibull, Fréchet and Gum-
bel). The first one uses some re-syntaxed segments from the Ghosh’s program WEIBUL [11],
preserving part of their functionality. The current implementation, however, is significantly im-
proved, using, in particular, the possibilities of the modern language. The program computes
the parameters m and x0 of both Weibull and Fréchet CDFs, as well as x0 and xu for the Gumbel
distribution, according to the described above LSE and MLE methods. The concordance of the
obtained continuous distributions with the empirical one is estimated with the root-mean-square
error (RMSE).

The parameter calculations were validated by comparing results, concerning the Weibull distri-
bution, with the outcome of Ghosh’s program, using the data set of Ang and Tang [3]. The out-
come of both programs is the same. Although the maximum number of iterations is set to 50, in
all performed tests the method converges to the solution using an initial value of m and x0 equal
to 1 and tolerance 1×10-4 in less than 10 iterations.

Although relatively small, the climate of Bulgaria is diverse. Its territory is divided in two cli-
mate areas – European-Continental climate area and Continental-Mediterranean one and four
subareas (Moderate-Continental, Transition-Continental, South-Bulgarian and Black-Sea one)
[21]. The program possibilities are demonstrated with two examples, handling data sets from
two stations of the meteorological network of the National Institute of Meteorology and Hyd-
rology – Bulgarian Academy of Sciences (NIMH–BAS). The stations are purposefully selected
with very different climate conditions. The series of annual maximum daily precipitation will
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be considered as “precipitation extremes” herein.

The first station is Vratsa. Its coordinates are 43.23N; 23.53E and is located on the foot of the
Balkan mountain, belonging to the European-Continental climate area. The station is in ope-
rational use since May 1929 and the absolute maximum of precipitation is 109.3 mm recorded
on 22.08.1966. The second station is Resovo. Its coordinates are 41.99N; 28.03E and it is the
southernmost Bulgarian coastal station, belonging to the Black-Sea climate subarea. Data in
the period 1961-2015 are used, the absolute maximum of precipitation is 216.7 mm recorded
on 25.09.1977. This value is extremely high for the Bulgarian climate conditions. Figs. 1 and 2
depict the observed values and the fitted CDFs, calculated with the parameters from the program
output.

Fig. 1 Measured precipitation extremes and fitted Weibull (left pane), Fréchet (middle pane)
and Gumbel (right pane) CDFs for station Vratsa

Fig. 2 Measured precipitation extremes and fitted Weibull (left pane), Fréchet (middle pane)
and Gumbel (right pane) CDFs for station Resovo

Return levels estimation
The estimation of the return levels (RL) of extreme events on the basis of a much shorter period
of observations, i.e. what extreme values might occur in 20-, 50-, 100-year or even longer, is
very important task [20]. The T-year, where T is the period of occurance, RL can be calculated
straightforwardly once the model parameters are estimated. For example, let m̂ and x̂0 be the
Weibull CDF-parameters, obtained with LSE or MLE, then, according to Eq. (2), we get:

x = x̂0

[
ln

1
Pf (x; m, x0)

] 1
m̂ (41)
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and substituting Pf = 1−1/T :

x = x̂0 (lnT )
1
m̂ . (42)

Similarly, from the Fréchet distribution we get:

x = x̂0

[
ln
(

T
T −1

)]− 1
m̂ (43)

and for the Gumbel distribution:

x = x̂u− x̂0 ln
[

ln
(

T
T −1

)]
(44)

in which T means the return period and x denotes the theoretical RL for a given return period.

The 100-, 50-, 20- and 5-year RLs for seek of brevity for the Vratsa data set only, estimated
with the obtained parameters, are listed in Table 1.

Table 1. Estimated return levels for the Vratsa data set (in mm)

Return period, Weibull CDF Fréchet CDF Gumbel CDF
years LSE MLE LSE MLE LSE MLE
100 88.5 94.8 152.5 196.2 110.7 108.3
50 84.6 90.0 125.7 155.5 100.6 98.6
20 78.6 82.8 97.2 114.1 87.2 85.7
5 66.3 68.0 64.7 69.9 66.1 65.4

It can be seen that the largest discrepancy between the estimations occurs for the longest return
period, calculated with the Weibull and Fréchet CDF, which is supported by the results, shown in
Figs. 1 and 2. Both curves for the Weibull CDF overestimate the probability of no exceedance of
upper extreme values resulting in slowly increasing of RL-values in this interval. The opposite
is the case of the Fréchet CDF: the both curves, especially the MLE one, underestimate the
empirical distribution, rising significantly even for the highest extreme values. As far as the both
curves (i.e., obtained with LSE and MSE) for the both stations, appears closest to the empirical
distribution for the high values, the Gumbel CDF appears most adequate for the approximation
of the upper limit of the empirical distribution. In the case of the 5-year return period (80%
probability of no exceedance), all CDF curves are seemingly closer to the empirical data set,
and the obtained RL values are similar.

The freely available for the research community database E-OBS version 13.0 of the European
Climate Assessment & data set (ECA&D) project [15] is used as a source for the computing of
the extreme annual daily maximum temperature (EADMT), considered in the second example.
The data set is in a regular grid of 0.25°×0.25° for the current implementation and daily tempo-
ral resolution, which is pre-processed, obtaining the annual extremes. The data-base is updated
periodically, data for the period 1950-2014 inclusive are used in the second example.

The main advantage of this data set in comparison with the point observations is that all data are
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passed a priori quality/homogeneity control and they are represented in spatially and temporally
continuous form of gridded digital map. This makes it a potentially useful source of information
for monitoring long-term changes in extremes. The 50-year return level of EADMT is computed
with both LSE and MLE methods, only for the grid cells with full 65-years length of the time-
series, as shown on Fig. 3.

Fig. 3 50-year return level of the extreme annual daily maximum temperature (°C), obtained
with the CDFs and estimators according the subplot titles

(database E-OBS version 13.0)

The 50-year return level of the extreme annual daily maximum temperature is very important
in planning for e.g. new infrastructure and thus it is a part of the EU-Mandated Harmonised
Standards Eurocode (see https://law.resource.org/pub/eu/eurocode.html for details). Roughly
speaking, the return level is similarly distributed of all panes of Fig. 3. The north-south tem-
perature gradient and elevation effects are well reproduced. Generally, as for the case with the
extreme annual precipitation, the Weibull CDF tends to produce smaller, and the Fréchet CDF
to produce larger values for the 50-year RL. Again, as in the above case, the Gumbel distribu-
tion shows intermediate results. This fact is most obviously expressed over the Scandinavian
mountains.

The simulated RL over a part of England on some subplots is not realistic and thus have to be
detailed with example for concrete grid-cell.

The analysis reveals that this is caused by values of the EADMT in 2013, which can be quanti-
fied as outliers. This conclusion is illustrated with concrete example for two adjacent grid-cells,
centered on longitude -0.875° and latitude 51.125° and 51.375° correspondingly, as shown on
on Fig. 4. The EADMT values in the both grid-cells are close to each other in all years, as
expected, except 2013. Astonishingly, the EADMT difference in 2013 is almost 6°C! The ex-
tremely heterogeneous distribution of the EADMT over the British islands, suggests problems
in the data set preparation for this year. The replacement of the suspicious EADMTs for 2013
with these, say, from the previous year, smooths the return levels field to the background values
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of about 36-40 °C. Same is the case with the hot-spot in SE Poland. It is worthy to emphasize
also, that these irregularities are at strongest expressed by the Fréchet CDF, and especially when
its parameters are obtained with MLE. The reason could be rooted in the limit behavior of this
distribution: It is heavy-tailed distributions (as, for example, these of Pareto, Student t, Cauchy,
Burr, log-gamma). In contrast, the Weibul, similarly to the the uniform and beta, is short-tailed
distribution with a finite right end-point. Interim case is the Gumbel CDF – like the normal,
exponential, gamma and log-normal, it tails decay essentially exponentially. More details about
this issue can be find in [6] and the references therein.

The analysis, performed in ECA&D (Else van den Besselaar, personal communication) reveals
the reasons for the described error – a swap in the data headers for the daily maximum and the
daily minimum temperature. This error is fixed in the subsequent versions 13.1 and 14.0.

Fig. 4 Time series of the EADMT (°C) in the considered two grid-cells (left panel) and the
distribution of the same variable in 2013 over part of the British islands (right panel).

The frames of the grid-cells are highlighted.

In order to obtain the 50-year RL from outlier-free gridded data set, recalculation for the same
period with the newest version (i.e., 16.0) of E-OBS is performed. The resulting RL-distribution
is shown on Fig. 5. Apparently, the spotted above problems are not presented here with a
small exception over SE Britain. Thus, the overall impression from the last two figures is
the confirmed applicability of the gridded E-OBS data set for computation of return levels of
temperature extremes in pan-European context.

The described shortcoming in E-OBS v13.0 shows clearly the high sensitivity of the MLE to
the presence of outliers in the input data, which is higher than the LSE sensitivity (notably in
the case of the Fréchet CDF).

It is well-established in the statistical literature, that the MLE does not provide consistent as
well as efficient estimations for the parameters of the considered CDF in the presence of outliers
(see [17] and references therein). To overcome this problem, some authors suggest modification
and/or generalization of the MLE. Thus, for instance, Neykov et al. [22] propose Trimmed Like-
lihood Estimator (TLE) as a useful alternative to the MLE. The basic idea behind the trimming
in this estimator is the removal of those observations, which values would be highly unlikely to
occur. Under the weighted maximum likelihood (WML) approach, proposed by Ejaz et al. [7]
and used from Khokan et al. [17] for the Weibull CDF, the weighted likelihood function L ∗ is
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Fig. 5 50-year return level of the extreme annual daily maximum temperature (°C), obtained
with the CDFs and estimators according the subplot titles

(database E-OBS version 16.0)

defined as:

L ∗(x1, x2, . . . , xn; a1, a2, . . . , ak) :=
n

∏
i=1

f δi(xi; a1, a2, . . . , ak), (45)

where δi takes value 1, if the observation is not an outlying observation, otherwise it takes
value 0. According to the authors, these methods show overall better performance, dealing with
noisy data. The selection, however, of some procedure-specific tuning parameters supposes
a degree of arbitrariness, and, generally, they are much more sophisticated and respectively
computationally demanding.

Finally, the 50-year RL, calculated at NIMH – BAS for Bulgaria with data from 125 stations
[9], reveal values of about 40 to 45°C for the lowlands, which are very close to those seen on
Fig. 3 and Fig. 4.

Conclusion
This paper describes the estimation procedure of the Fréchet and Gumbel cumulative distribu-
tion function of data sets of random variables using the widely used methods LSE and MLE.
The described explicit approach allows their effective derivation with prescribed in advance to-
lerance. Both methods form the basis of the developed FORTRAN 90/95 code which can be
used ’as it is’ or as part of other projects. The proposed solutions could be used by researchers
to develop their own code, in general case, of preferable language. This was the main goal of the
authors. As far as the paper primarily targets the geophysical community, two relevant examples
are shown here. The high sensitivity of the MLE to the presence of outliers is also discussed.
The author’s opinion is that the MLE should be used carefully when dealing with noisy data
sets. Although, generally, such statistical fitting can be performed with stand-alone statistical
packages, in many cases the explicit code is preferable. In all cases, however, it is researcher’s
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responsibility, to check the data set for outliers and to select the proper CDF. There is no general
recipe, but well-elaborated goodness-of-fit tests should be used to estimate the feasibility of the
theoretical continuous distribution.
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