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Abstract: In this paper a nonlinear control intended for Blood glucose regulation for Type 1 

Diabetes patients is considered. The control law is designed using the Lyapunov theory 

associated with a Kalman filter to estimate the system states. The asymptotic stability of the 

overall system is theoretically proven. The proposed control scheme will be implemented in a 

low cost embedded system. The simulation results confirm the effectiveness of the proposed 

control. 
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Introduction 
Insulin is a hormone produced by the pancreas to regulate blood glucose in the human body. 

If the pancreas does not give enough or more insulin, blood glucose concentration becomes 

upper or lower than the recommended range. People’s pancreas with Type 1 Diabetes (T1D) 

produces little or no insulin. They need insulin injections every day in order to control the 

levels of glucose in their blood. To prevent or delay the onset of microvascular (retinopathy, 

nephropathy) and macrovascular (myocardial ischemia, stroke) complications [5, 24], 

diabetes management becomes necessary. 

 

In 2017, the American Diabetes Association (ADA) has fixed the glycemic target range  

(80-180) mg/dl for many non-pregnant adults with diabetes [1]. 

 

In this context emerging treatment approaches, also known as the artificial pancreas, have 

been developed. It is a closed-loop insulin delivery [9]. It links a continuous glucose monitor 

(CGM) to an insulin pump via a control algorithm, which infuses the correct dose of insulin 

and keeps blood glucose in the target zone (Fig. 1). 
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In normal case, insulin is secreted by pancreas in discrete pulses into the portal vein.  

The main difficulty of the subcutaneous artificial pancreas seems to be related to the non-

control of post-prandial glucose levels due to delays in glucose measurement and in the action 

of insulin [20, 23]. 

 

 
Fig. 1 Description of the artificial pancreas system 

 

Most of the existing artificial pancreases give satisfactory results. For instance the one 

approved in 2012 [13] which combines an insulin pump to a continuous glucose monitor.  

This system decreases the number of T1D patients’ hypoglycemia by stopping delivery of 

insulin. 

 

Fig. 2 represents the location of the insulin pump and glucose sensor in the human body [6]. 

 

 
Fig. 2 Location of the insulin pump and glucose sensor on human body 

 

MiniMed 670G system is the first hybrid closed loop system approved by the FDA in 

September 2016. It is the most developed insulin pump and sensor system [8, 12]. 

 

The design of an artificial pancreas was suggested and several mathematical models were 

developed. The latter allowed to describe the relationship between blood glucose and insulin 

in the human body. 
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The well-known model, called Bergman Minimal Model (BMM), was developed by Bergman 

in 1986. The control of the blood glucose by the insulin hormone allows patients to obtain the 

homeostasis of glucose, according to the scheme presented in Fig. 3 [3, 19, 25]. 

 

 
Fig. 3 Physiological glucose-insulin regulatory system 

 

The main objective of this paper is to propose a control strategy in order to obtain a normal 

plasma glucose concentration (80-160) [mg/dL] for T1D. 

 

Though Bergman’s minimal model is a non-linear system, which requires high-performance 

control, we opted for the non-linear backstepping, using the Lyapunov approach. This control 

requires some variable state (insulin X, I). It can be estimated by a Kalman filter [17].  

The theory of Kalman filter can be extended to nonlinear processes, through a linearization 

procedure known as an “Extended Kalman filter” [28]. 

 

Modeling of glucose and insulin kinetics 
The original minimal model describes how the glucose level behaves according to measured 

insulin data during an IVGTT (intravenous glucose tolerance test) [2, 4, 21], Fig. 4. 

 

 
 

Fig. 4 Schematic illustration of BMM 
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Bergman’s model is developed from differential equations of the first order using three state 

variables including: the blood glucose concentration (G), interstitial insulin (X) found between 

the muscle cells and is involved in the uptake of glucose into the muscles, and the plasmatic 

insulin concentration (I) [26, 27]. 

 

Bergman’s minimal model is a one-compartment model, in which the body is described as a 

compartment with a basal concentration of glucose and insulin. For that purpose, we need 

information on these two parameters: Gb (basal glucose) and Ib (basal insulin) [12]. 

 

In case of Type 1 diabetic patients, these parameters are unknown compared to other kinds of 

diabetics. Plasmatic insulin moves in the interstitial tissue compartment at a rate proportional 

to the difference between the plasma insulin level I(t), and the basal level, Ib: 
 

 if I(t) > Ib insulin enters the interstitial tissue compartment. 

Insulin in the interstitial tissue compartment disappears by another pathway at a rate 

proportional to the concentration of insulin in this compartment. However, glucose 

enters the plasma compartment at a rate proportional to the difference between the 

plasma glucose level, G(t), and the basal level, Gb. 

 if G(t) < Gb, glucose enters the plasma compartment, 

 if G(t) > Gb, glucose leaves the plasma compartment. 

 

Similar to insulin, Glucose disappears from the plasma compartment by another pathway at a 

rate proportional to the concentration of insulin in the interstitial tissue [15]. 

 

The model of a BG and insulin dynamics is represented by three differential equations as 

follows [3, 4, 12, 14, 25]: 
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where G(0) = Gb, I(0) = 0 and X(0) = 0, the first expression of Eq. (1), describes the dynamics 

of the metabolism of glucose, the second expression of Eq. (1), represents the dynamics of the 

transport of insulin from the blood to interstitial fluid, and the last expression of Eq. (1), 

describes the change in insulin concentration in the blood over time. 

 

Many researchers have tried to include the effect of physical exercise on insulin sensitivity 

and glucose effectiveness. In fact, some modifications on the original minimal model have 

been proposed. This is done by adding more equations so that the model becomes more 

complex [7]. 

 

System (1) can be written as follow: 
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The system (1) is non-linear and can be presented in the following general form: 
 

),( Uxfx  , (3) 
 

with 
T][ IXGx  ; 

T]1[ ig UUU  . 

 

Validation of the model 
To test the Bergman model (1), some simulations have been done and compared to other 

works [12]. Fig. 5 represents the response of the BMM during three clinical tests (exogenous 

meal without insulin (0-500) min, insulin administration without meals (500-1000) min and 

fasting (1000-1500) min. Note that for all the tests; the basal glucose is set at 

Gb = 200 mg/dL and the basal insulin concentration is set at Ib = 0 uU/mL. All parameters are 

given in the Appendix. 
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Fig. 5 Testing of the BMM 

 

Exogenous glucose [0-500 min] 
During this test, the model is excited by Fisher’s function, )exp()( tAtD  , as meal 

disturbance at t = 100 min. The objective of this test is to observe the reaction of BMM to 

such disturbance without exogenous insulin [11], where A = (4, 8, 12) [g], and  = 0.1 min-1. 

 

The results show that glucose has a similar form as meal increases and then returns to its 

initial state within 2 hours. 

 

In physiology, it is well known that after meal ingestion, a peak of plasma glucose 

concentration appears (30-60) min [22]. 

 

Exogenous insulin Administration [500-1000 min] 
In the second test an exogenous insulin injection is applied on the BMM according to the next 

function ( ) exp( )iU t a bt  , where a = (20, 60 and 120) [µU/mL] and b = 0.1 [min-1]. 

 

We note that the plasmatic glucose concentration drops in regard of the plasmatic insulin 

concentration. For normal subjects, after meal, the peak plasma insulin level is obtained 30 to 

60 minutes without exceeding 70 [uUI/mL]. The insulin concentration returns to its normal 

values after 2 hours [22]. 
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Fasting test [1000-1500 min] 
In the last test, the plasmatic glucose concentration remains at the same initial level 

200 [mg/dL]. This test is used to identify the basal insulin value of T1D. 

 

In the treatment of T1D, it is important to identify the basal insulin value. The first role of 

basal insulin is to maintain blood glucose concentrations stable at its rate values. While 

fasting, basal insulin is needed to regulate the glucose delivered continuously by the liver and 

keep the plasmatic glucose levels in the normal range. 

 

Kalman filter state variable observation 
The Kalman filter is an algorithm that is paralleled with the system using its model as 

equations of state. It allows to reconstruct or estimate all the state variables, if the system is 

observable. 

 

The comparison between the outputs of the system and Kalman filter is multiplied by the 

Kalman gain matrix and then added to the estimated state variables.  

 

Discretization of Bergman мodel 
The discretization of Bergman Model (3) using Euler approximation gives as: 
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where T is the sampling period which must be smaller than the small time constant of the 

system. Using Eq. (4) and Eq. (1), we obtain the following equations: 
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The EKF uses the discrete model of the system as states equations. In a stochastic medium, 

the system (6) can be represented by: 
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where yk is the system output and T]00[)( Gxh k  . 
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Kalman filter algorithm 
In general, EKF Algorithm has two alternate phases as follows: 

 

Prediction phase (time update) 

In this phase, the state vector is first estimated at (k + 1) according of the state and of the 

measurements made at (k). 
 

1 ( , )k kx x Tf x U   . (8) 

 

The covariance matrix is also computed in this phase by the following equation: 
 

1/ /
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where Fdk is the system Jacobian matrix. 

 

Correction phase (measurement update) 

The Kalman gain is calculated by the following equation: 
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where Hk is the Jacobian matrix of the output vector. 

 

The correction of the estimated state vector is done by the Еq. (11): 
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In Eq. (11), we note that the difference between the output of the system and that of the EKF 

is multiplied by the Kalman gain, calculated in [10]. The result is then added to the state 

vector computed in the first phase Eq. (8). 

 

The last equation of the correction phase consists in updating covariance matrix: 
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Control strategy 
Fig. 6 illustrates a general block diagram of the suggested BG control scheme Note that the 

placement of the Kalman filter to estimate the I and X states of the BG Model. 

 

 
Fig. 6 Scheme of the proposed control 

 

Backstepping of GB controller design 
Nonlinear control is one of the biggest challenges in modern control theory. Nonlinear 

processes are difficult to control because there can be so many variations of the nonlinear 

behaviour. The method of Lyapunov, also known as Lyapunov’s direct method [16], is 

becoming increasingly recognized as having great potentiality, both for resolving nonlinear 

stability and performance problems. Lyapunov’s direct method is now being widely used for 

designing stable controllers for various fields like biomedical applications. Lyapunov function 

is energy-like function. This function may draw conclusions about the stability of the system 

without solving the set of non- linear equations. 

 

Step 1 
The controller based on the Lyapunov method is designed as slope changes of energy function 

which always remains negative ( 0V ) [16]. This energy function consists of a set of error 

terms. This expression provides stability condition of error terms in the presence of 

uncertainty and disturbance. Therefore, the tracking error and its derivative are defined as 

below. Let us formulate a Lyapunov function as follows: 
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its derivative function is  
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Substituting Eq. (1) and Eq. (14) gives 
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Eq. (15) becomes negative definite, if we define the following the virtual control law: 
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Indeed, Eq. (16) substituted into Eq. (55) gives the required result as: 
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where K1 > 0 and G 0. 
 

Step 2 

Now, we have to find the control to ensure that X  X* 
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Eq. (51) becomes negative definite, if we define the following virtual control law: 
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Indeed, Eq. (20) substituted into Eq. (19) gives the required result as: 
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Step 3 
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The Eq. (23) becomes negative definite, if we define the following the reel control law: 
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Indeed, Eq. (24) substituted into Eq. (23) gives the required result as: 
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Simulation tests and discussion 
In order to validate our work, the performance of the proposed control scheme is presented 

via simulation results. First, the performances of the proposed Back-stepping controller are 

analyzed and compared with the classical PI controller. Second, the performances of Kalman 

observer are presented by estimations of error. The rating and parameters of the BMM are 

given in the appendix. Note that for all simulations given for Gb = 200 mg/dL, Ib = 0 uU/L 

and the initial glucose basal Gb0 = 200 mg/dL. 

 

Fig. 7 presents the carbohydrate intake within one day according to three different meals 

(breakfast, lunch and dinner). 

 

 
Fig. 7 Meal profile 

Simulation results 
Figs. 8 and 1 present the plasmatic glucose response with back-steeping and PI controller for 

three different periods of meals profile as shown in Fig. 7. Figs. 10-13 show the interstitial 

insulin and plasmatic insulin profiles with both proposed control and PI controllers. 

Estimations errors of plasmatic glucose, plasmatic insulin and interstitial insulin are presented 

in Figs. 14-16. 

 

 
Fig. 8 Control of glucose with Lyapunov 
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Fig. 9 Control of glucose with PI 

 

 
Fig. 10 Interstitial insulin (with Lyapunov) 

 

 
Fig. 11 Interstitial insulin (with PI) 

 
Fig. 12 Insulin (with Lyapunov) 
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Fig. 13 Insulin (with PI) 

 

 
Fig. 14 Error of glucose estimation (Kalman filter) 

 

 

 
Fig. 15 Error of insulin concentration estimation (Kalman filter) 

 
Fig. 16 Error of interstitial insulin estimation (Kalman filter) 
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Discussions 
Fig. 8 illustrates the plasmatic glucose concentration after introducing three meals with 

different carbohydrate concentrations. That confirms the efficacy and stability of the proposed 

control system. Figs. 51 and 12 show the concentration of insulin interstitial and plasmatic 

insulin that the controller injects for the T1D subject to reach the target range. Comparing the 

performance of the proposed controller with the classical PI, we prove the efficacy and 

stability of Lyapunov controller. 

 

We can observe in Figs. 14-16 that the variations of the error signals is related to meals 

intake. More the meal is important, more the error is larger. Besides, the results show the 

good performance of estimation since the errors are in a small range of variations. 

 

Conclusion 
Due to its simplicity, the Bergman minimal model is widely used to study the behavior of 

T1D. Besides, this model is used to design the control laws to regulate the blood glucose 

concentration. This is of great importance for improving methods and evaluating the 

effectiveness of diabetes treatment systems [18]. 

 

In this paper, a nonlinear control was proposed to improve the performance of blood glucose 

regulation of T1D. The Control stability is proved using a Lyapunov approach. Simulation 

results for different meal profiles have been shown. 

 

This control needs some state variables of the model. To do this, Kalman filter is used.  

The obtained results clearly indicate successful ride-through performance of the proposed 

control. 

 

Nomenclature 
 

I : the plasma insulin concentration, [U/mL] 

X : the interstitial insulin, [min-1] 

G : the plasma glucose concentration, [mg/dL] 

P1 : the glucose effectiveness, [min-1] 

P2 : the weighted external insulin input, [min-1] 

P3 : the insulin clearance, [mL/uU·min-2] 

Gb : the basal plasma glucose concentration, [mg/dL] 

Ib : Basal blood insulin concentration, [U/mL] 

N : the transfer coefficient of insulin to interstitial compartment, [min-1] 

T1D : Type 1 Diabetes 

BG : Blood Glucose 

BMM : Bergman Minimal Model 

EKF : Extended Kalman Filter  

CGM : Continuous Glucose Monitoring 

FDA : Food and Drug Administration 
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Appendix 
 

Parameter Value Unit 

P1 0.028735 min-1 

P2 0.028344 min-1 

P3 5.0353∙10-5 mL/uU·min-2 

Gb 200 uU/mL 

Ib 0 uU/mL 

N 0.10 min-1 

vi 12 L 
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