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Abstract: For non-coding RNA gene mining, especially microRNA mining, there are many 

challenges in the classification of imbalanced data. A novel classification method based on 

the Adaboost algorithm is proposed to handle the imbalance of positive and negative cases. 

Unstable-Adaboost is improved with respect to the initial weight assignment, the base 

classifier selection, the weight adjustment mechanism and other aspects. Furthermore, the 

Stable-Adaboost algorithm is proposed, which adjusts the weight of the sample set to rapidly 

achieve a more balanced training set. In addition, the Stable-Adaboost algorithm can ensure 

that the follow-up training set is maintained in a balanced state by optimizing the weight 

adjustment mechanism of incorrectly classified samples and stabilizing the classification 

performance. Experimental results show the superiority of Unstable-Adaboost and Stable-

Adaboost in imbalance classification. 

 

Keywords: Non-coding RNA, Class imbalance, Ensemble learning, Adaboost algorithm. 

 

Introduction 
MicroRNA (miRNA) is a class of endogenous, noncoding, single-stranded RNA molecules 

that have a length of approximately 23 nt. Identification of miRNA and the prediction of 

corresponding target genes of miRNA are conducted to identify the biological functions and 

action mechanisms of miRNA. The accurate identification of miRNA can help researchers to 

analyze biological gene regulatory networks, understand the processes of post-transcriptional 

genes and guide drug development. Currently, research into the identification of miRNA is 

advancing, with the ab initio prediction method [5] being widely used. This method allows a 

classification model for unknown sequences to be established by extracting the secondary 

structure characteristics of miRNA precursor (pre-miRNA) molecules and combining the 

sequence features [18]. However, imbalanced classification is a serious problem of the 

method, as most of the positive examples are selected from experimental verification, whereas 

the negative ones typically are not. Therefore, negative examples are obtained with low cost 

and positive examples with high cost such that negative examples are typically far more 

abundant than positive examples in the training set. This problem is often encountered in SNP 

discrimination [12] and microArray data analysis [8]. 

 

Classification imbalance can occur in many areas [13, 20, 21], especially in binary 

classification problems, such as financial fraud detection [15], oil exploration [7] and anti-
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spam [2]. However, the ordinary classification method of machine learning cannot be directly 

applied to these areas [19]. To solve the problems of learning imbalanced classification, a 

random sampling approach has been proposed, in which the training set of samples is changed 

so that equilibrium can be reached. The simplest methods of random sampling are over-

sampling and under-sampling. Research has shown that the random over-sampling method 

typically results in problems such as long computation times and over-fitting; as a result, the 

random down-sampling method is more commonly adopted. However, the random down-

sampling method only uses a subset of the majority class, precluding full use of the existing 

information. Recently, several manual sampling approaches have been proposed. SMOTE [1] 

is based on over-sampling but increases the minority class samples through artificial means 

rather than through random selection and copying, thereby avoiding the over-fitting problem, 

although noise can still be generated. 

 

In addition to these sampling approaches, other methods have been applied to handle class-

imbalanced data, such as the boosting method of ensemble learning [4], the cost-sensitive 

learning algorithm [25], the single-class learning method [11], cascade neural networks [10], 

and clustering and support vector machines [9]. Theoretical analysis and experimental data 

have demonstrated that among these other methods, the ensemble learning method produces 

the most satisfactory results with class-imbalanced datasets. This method combines some 

weak classifiers into one strong one with high accuracy (ensemble classifier). Thus, compared 

with the original classification model, this method can improve the classification accuracy of 

the minority class. Adaboost [3] is a well-known ensemble learning algorithm that can 

effectively improve the generalization ability of the base classifiers. In recent years, some 

improved algorithms for processing imbalanced data have emerged, such as the RareBoost 

algorithm, the Cost-Boosting algorithm, and the AdaCost algorithm, which have better 

learning effects. To address the problem of imbalanced classification in miRNA 

identification, an integrated algorithm LibID was proposed by Zou et al. [26]. LibID employs 

a strategy similar to Adaboost, and it can yield a better recognition effect while ensuring 

sensitivity and improving specificity. However, it uses different base classifiers and a 

repeated training sample, resulting in a slightly longer training time compared with that of the 

general integration algorithm. The algorithm PlantMiRNAPred, proposed by Xuan et al. [22], 

also employs a strategy similar to Adaboost, but it considers the extreme imbalance factors 

between the positive and negative examples. It uses filtering steps to filter the samples that are 

easy or difficult to classify, and new classifiers are used to handle the samples that are readily 

classified incorrectly. However, the PlantMiRNAPred algorithm is mainly used to predict true 

and false plant pre-miRNAs.  

 

Several research methods for miRNA prediction have appeared in recent years, such as the 

method proposed by Kamarajan et al. [6] and one proposed by Wang [17]. Extensive research 

on the classification imbalance problem in miRNA recognition has been conducted, and some 

related algorithms have been proposed. A comprehensive comparison of the efficiency and 

performance of these algorithms has been conducted in [16]. A difficulty encountered in 

developing such methods is how to select a representative sample from the positive and 

negative class-imbalance data to adequately describe the whole sample space. The algorithm 

MatFind is proposed by Ying et al. [24]. They proposed that the ensemble SVM classifiers 

and balanced-datasets can solve the class-imbalanced problem, as well as improve 

performance of classifier for mature miRNA identification. MatFind is an accurate and fast 

method for 5’ mature miRNA identification. The algorithm ELM, proposed by Rodriguez et 

al. [14], is a novel approach to overcome the high class imbalance in pre-miRNAs prediction 

data in which ELMs are used for predicting good candidates to pre-miRNA, without needing 

http://www.oalib.com/search?kw=Banu%20Pradheepa%20Kamarajan&searchField=authors
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balanced data sets. The present paper investigates the processing imbalance problem of the 

Adaboost algorithm in pre-miRNA identification and improves and optimizes the Adaboost 

algorithm with respect to classification performance, efficiency and stability. Experimental 

results show that this method can effectively improve the performance of the classifier in 

imbalanced data. 

 

Weight-adjustment optimization mechanism  

of the stable-Adaboost algorithm 
The Adaboost algorithm has some problems in imbalanced dataset classification.  

 

Problem 1. The algorithm requires more cycles to complete the entire weight-adjustment 

process, and the classifiers for the majority class that are produced in this training process are 

far more abundant than are those for the minority class.  

 

Problem 2. The balanced dataset obtained by extracting from the training set cannot remain 

stable; the dataset will become imbalanced again in the process of the algorithm.  

 

The Adaboost algorithm can be improved with respect to these problems. By optimizing the 

initial sampling weights during the weighted random-sampling process of the Adaboost 

algorithm to rapidly balance the number of each class in the training set, classifiers with high 

accuracy for each class can be achieved. Then, the problem of how to assign the weights is 

related to the mathematical probability. 

 

Assuming that the dataset contains minority class A and majority class B, that the probability 

that each sample in A can be extracted is the same, and that the probability that each sample 

in B can be extracted is the same, then the problem of sample balance is converted to an equal 

probability question.  

 

Suppose a random sample s is extracted from the dataset containing A and B and the 

probability of s being extracted from A is same as the probability of being extracted from B, 

then the initial weights of the minority class and majority class can be calculated by the 

following formula: 

 

0A A B BW N W N  . (1) 

 

Therefore, the initial weight ratio of the two categories of samples can be calculated by the 

formula WA / WB = NB / NA. 

 

By adjusting the initial weights, Problem 1 is solved, and Problem 2 is solved by the weight 

adjustment. In the Adaboost algorithm, the weight adjustment method after training is as 

below. 

 

 

 
  , 0.5

1

i
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
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where      i wrongly classified samples training samplesC Number Numbr erE  / . 
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It can be found that when the base classifiers meet the conditions of the ensemble learning 

(that is, when the error rate Er(Ci) is less than 0.5), the lower the error rate is, the more the 

weight of the correctly classified sample is reduced. This method ensures the comprehensive 

learning of the dataset; however, some problems remain for classifying imbalanced data. 

Therefore, we adjust the sample weights of the majority class by referring to the classical 

Adaboost algorithm after training while calculating the total weight reduction value of the 

samples in majority class TRW, and this value is equally distributed to each sample that is 

classified correctly in the minority class. This approach not only retains the comprehensive 

learning characteristics of the Adaboost algorithm for classification but also ensures the 

stability of the dataset and maintains a balanced dataset for further training. 

 

In the selection process of the base classifiers, the error rate Er(Ci) is adopted as the eligibility 

criteria of the base classifiers. The calculation method of the Adaboost algorithm is not used 

here because we found in experiments that when the number of iterations increases, the 

weight of the sample becomes smaller; therefore, the error rate according to the calculation 

method of the Adaboost algorithm cannot truly reflect the performance of the base classifiers. 

The weight calculation Eqs. (2)-(3) for the base classifier ensemble is the same as for the 

Adaboost algorithm. 

 

    , 1, 2, 3,{ },i iPredict x vote W C x i t  . (3) 

 

The following is the description of the improved Adaboost algorithm: 

 

Input: weak classifier SVM (support vector machine), training dataset of Adaboost, the 

number of the base classifiers N (cycle number), the training sample number k; 

 

Output: ensemble classifier 1 2{ , , , };NC C C C  

 

The training phases: 

 

(1) initialize the weight of each sample in Adaboost to achieve the balance of positive samples 

and negative samples in random sampling: 

     = /  /negative sample positive sample negative sample positive sampleWeight Weight number number  

 

(2) for I = 1 to N do 

 

(3) get training subset Si by sampling with replacement from S according to the weight of the 

sample 

 

(4) train the base classifier Ci by Si and L 

 

(5) calculate the error rate Er(Ci): 

  /   i wrongly classified samples training samplesC Number Numbr erE   

 

(6) if the Er(Ci) > 0.5 then 
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(7) initialize the weight of each sample in Adaboost again to achieve the balance of positive 

samples and negative samples in random sampling  

 

(8) return to step (3) and try again 

 

(9) end if 

 

(10) for each majority sample correctly classified in Si do 

 

(11) / ( )( ( ) 1 ( )new current i iWeight Weight Er C Er C     

 

(12) calculate total weight reduction value TRW   

 

(13) end for  

 

(14) for each correct classification of the minority class in the Si sample do 

 

(15) 
      /sample correct classification sample in the minority classWeight TRW Number  

 

(16) end for 

 

(17) end for 

 

The classification phases: 

 

(18) input sample test; 

 

(19) for I = 1 to N do 

 

(20)
1 ( )

log
( )

i
i

i

Er C
Weight

Er C

 
  

 
 

 

(21) end  /* calculate the weight of each classifier */ 

 

(22) use N base classifiers to classify for a given sample x, and return classification results by 

the weighted vote combined method.  

 

The experimental results show that the improved Adaboost algorithm can rapidly obtain 

sustainable training datasets with two balanced categories, achieve base classifiers with high 

classification accuracy for each class, and improve the classification accuracy by ensemble 

learning. The newly proposed algorithm reduces the processing time and improves the 

operational efficiency compared with the original algorithm, and it has high applicability for 

class-imbalanced data. 

 

Experiment and results  

Experimental dataset 
In the experiment, we used a dataset of miRNA. MiRNA, also known as small RNA, refers to 

single-stranded, non-coding, regulatory RNA molecules of short length. Different from RNA, 
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miRNA is not translated into a protein when transcribed but plays a regulatory role in 

metabolism; thus, it is of great significance for research on biological genes. 

 

The dataset used is the same one used in Xue et al. [23]. As a typical imbalanced class dataset, 

it includes 193 positive samples and 8494 negative samples, the ratio of which is 1:44.  

Each sample contains 32 characteristic attributes and one class attribute, and all of the 

attributes are numeric. The test set contain 30 positive samples and 1000 negative samples, 

and the training set is achieved by the improved Adaboost algorithm. 

 

Experimental methods 
Because the samples in the dataset contain many properties, SVM is selected as the 

classification algorithm. When dealing with binary-class problems and when the properties of 

the samples are continuous in time, SVM typically has better learning effects than do other 

learning algorithms. To accurately measure the performance of the classifier, some samples 

are reserved as test datasets for the ensemble classifier performance test before classification 

training. The ratio of positive and negative samples in the test dataset should be close to that 

of the original dataset (1:44). 

 

In terms of evaluation criteria, sensitivity (sn) and specificity (sp), which have better 

measurement ability where biological class-imbalance data are concerned, as well as gm 

proposed by Wei et al. [18], are adopted to directly compare the overall performance of the 

classifiers. 

 

TP denotes the number of positive samples that are correctly predicted, and TN denotes the 

number of negative examples that are correctly predicted. FN denotes the number of positive 

samples that are incorrectly predicted, and FP denotes the number of negative examples that 

are incorrectly predicted: 

 

/ ( )sn TP TP FN  , (4) 

 

/ ( )sp TN FP TN  , (5) 

 

( )gm sqrt sn sp  . (6) 

 

The experimental procedures are described below: 

 

1. The ensemble classifier based on Adaboost is achieved, and the changes in the training set 

and the classification results are observed. 

 

2. Adaboost is improved by modifying the initial weights and error rate calculation method 

(called the Unstable-Adaboost algorithm), the ensemble classifier based on this improvement 

is achieved and the training set changes and classification results are observed. 

 

3. Adaboost is improved by modifying the initial weights and error rate calculation method 

and by weight adjustment after training (called the Stable-Adaboost algorithm). The ensemble 

classifier based on this improvement is achieved, and the training set changes and 

classification results are observed. 
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Unstable-Adaboost is actually a partially optimized method of Adaboost in terms of 

imbalanced data classification. This method adjusts the initial weights but avoids the lengthy 

first weight adjustment process, and it removes a large number of severely biased classifiers 

produced by this process. Afterwards, in the subsequent training, the balance degree of the 

training set remains volatile, which has a further impact on the ensemble classification. 

 

Stable-Adaboost, based on Unstable-Adaboost, improves the weight adjustment after training, 

and it inhibits the structure volatility of the training set so that it can maintain the training set 

in an equilibrium state. 

 

Analysis of experimental results 
1. We set different iterations to train the classifier by Adaboost and observe the structural 

changes of the training set and the number of iterations when the first equilibrium is reached. 

 

When the ratio of the number of positive to negative samples is 1:44, the Adaboost algorithm 

requires approximately 40 iterations to first obtain the training set with a ratio of the number 

of positive to negative samples close to 1:1. Therefore, this algorithm requires a long time to 

run, and the time requirement will increase with an increasing sample base and an increasing 

imbalance degree of the dataset, as shown in Fig. 1. 

 

 
Fig. 1 Number of iterations required to stabilize the training set 

 

2. We train the classifier by Unstable-Adaboost and observe the changes in the proportions of 

the positive and negative samples in the training set and the ensemble classifier performance 

under different numbers of iterations. 

 

Fig. 2 shows that the training set extracted first is more balanced and that the training set has a 

large change in the sample proportion at the third extraction, with the ratio of the number of 

positive to negative samples decreasing to approximately 4:10. Thus, the changes in the 

ratio are less severe, with an overall tendency for the number of positive samples to increase 

and the number of negative samples to decrease. After several iterations, the extracted training 

set is balanced once again, followed by imbalance after additional training, after which the 

process is repeated. 
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Fig. 2 The changing structure of the training set in the Unstable-Adaboost process 

 

In Fig. 3, due to the adjustment of the initial weight, the training set extracted in the first 

training is balanced, and the classifiers trained have high overall performance gm. After this 

point, gm appears volatile. It can be seen in Fig. 2 that the imbalance degree of the training set 

increases sharply at the third training. Over approximately 30 trainings, the training set is 

always in an imbalanced state, and the performance of the ensemble classifier is reduced. 

From the 30
th

 to 40
th

 training, the training set returns to a balanced state, and the performance 

of the ensemble classifier increases. A second peak in gm occurs at the 40
th

 training but is 

significantly weaker than before. After the 40
th

 training, the training set appears imbalanced 

again, the ensemble classifier performance decreases, and Unstable-Adaboost enters the 

second transition process. 

 

The ultimate goals of the ensemble classification are to improve the classification 

performance and to obtain ensemble classifiers with an overall performance that is better than 

the performance of the base classifiers. The performance of the ensemble classifier should 

exhibit an upward trend and then level off with an increasing number of training iterations. 

Unstable-Adaboost improves the classification performance by modifying the initial weights 

in Adaboost to reduce the redundancy; however, it is obvious that some problems remain. 

 

 
Fig. 3 gm of the ensemble classifiers in Unstable-Adaboost under different iterations 

 

3. With different iterations, ensemble classifications are performed by Stable-Adaboost, 

during which the structure of the training set and integrated classifier performance changes 

are observed. The ratio of the positive and negative samples in the training set are shown in 

Fig. 4. 
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Fig. 4 The ratio of positive to negative samples in the training set during the iteration process 

 

It shows that after the weight adjustment mechanism is modified, the training sets maintains a 

balanced state. 

 

Fig. 5 shows that the performance of the ensemble classifier first increases with an increasing 

number of iterations and then tends to be stable. After several iterations, gm becomes stable in 

the vicinity of 0.914, and the performance improvement compared with that of a single 

classifier is obvious. 

 

 
Fig. 5 gm of the ensemble classifiers in Stable-Adaboost under different iterations 

 

Fig. 6 shows that Stable-Adaboost is much better than Unstable-Adaboost in sensitivity and 

that the recognition rate for the minority class increases significantly with Stable-Adaboost. 

The specificity of Stable-Adaboost is slightly lower than that of Unstable-Adaboost, which 

has almost the same recognition abilities for the majority class. Compared with Unstable-

Adaboost, the overall performance of Stable-Adaboost is greatlyenhanced. 

 

 
Fig. 6 The performance of ensemble classifiers in Unstable-Adaboost and Stable-Adaboost 
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UCI data 
The UCI test datasets cmc, haberman, ionosphere, letter and pima are selected. These datasets 

have real number properties and are class imbalanced (in multi-class problems, the smallest 

class is considered as positive class and the remainder are seen as negative class). The 

methods contrasted with our methods are Adaboost (the base classifier is the decision tree 

method), random down-sampling (UnderSampl), mixed sampling (HSampl), AsymBoost and 

BalanceCascade, for which the experimental results from UCI test datasets are obtained from 

the literature. In addition, to verify the effectiveness of the proposed algorithm, we also 

compare Unstable-Adaboost and Stable-Adaboost. The experimental results are shown in 

Table 1. 

 

Table 1. The results of the classifiers using the UCI dataset 

Data (| P |/| N|) Classifier Precision Recall 

cmc (333/1140) Adaboost 0.40 0.39 

 UnderSampl 0.33 0.63 

 HSampl 0.37 0.48 

 AsymBoost 0.39 0.42 

 BalanceCascade 0.35 0.59 

 Unstable-Adaboost 0.42 0.62 

 Stable-Adaboost 0.53 0.68 

haberman (81/225) Adaboost 0.35 0.36 

 UnderSampl 0.36 0.60 

 HSampl 0.36 0.47 

 AsymBoost 0.34 0.39 

 BalanceCascade 0.36 0.57 

 Unstable-Adaboost 0.48 0.79 

 Stable-Adaboost 0.56 0.86 

ionosphere (126/225) Adaboost 0.95 0.88 

 UnderSampl 0.92 0.89 

 HSampl 0.94 0.86 

 AsymBoost 0.95 0.88 

 BalanceCascade 0.93 0.89 

 Unstable-Adaboost 0.93 0.88 

 Stable-Adaboost 0.94 0.90 

pima (268/500) Adaboost 0.63 0.60 

 UnderSampl 0.58 0.73 

 HSampl 0.62 0.65 

 AsymBoost 0.63 0.61 

 BalanceCascade 0.60 0.71 

 Unstable-Adaboost 0.77 0.74 

 Stable-Adaboost 0.79 0.82 

letter (789/19211) Adaboost 0.99 0.98 

 UnderSampl 0.83 0.99 

 HSampl 0.92 0.99 

 AsymBoost 0.99 0.98 

 BalanceCascade 0.96 0.99 

 Unstable-Adaboost 0.89 0.98 

 Stable-Adaboost 0.85 0.98 
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As shown in Table 1, the methods proposed here have slightly worse performance than those 

of the previous methods only for the dataset letter, and their performances for the other 

datasets are superior to those of the other classification methods. Our methods are based on 

the ensemble learning theory; therefore, they are better suited to handle datasets with weak 

classification (e.g., cmc and haberman). letter is a strong classification dataset, and the 

decision tree based on Adaboost was almost completely accurate; the methods proposed here 

were less so. However, in general and particularly when dealing with a class-imbalanced 

dataset with weak classification, the improved methods proposed here show strong 

advantages. 

 
The performance of Stable-Adaboost is better than Unstable-Adaboost on the datasets 

haberman, ionospher, pima and cmc and slightly worse than Unstable-Adaboost on the 

dataset letter. Due to the facts that letter is a strong classification dataset and that 

misclassified data of each classifier are very few, iteration training on letter is ineffective. 

Therefore, Stable-Adaboost yields a greater overall performance improvement than does 

Unstable-Adaboost. 

 

Comparisons with similar algorithms 
To verify the effectiveness of the proposed method, we compare the improved method to 

other similar algorithms by using a miRNA dataset. Xue et al. [23] studied the miRNA of 

human precursors and provided a dataset with 193 positive samples and 8494 negative 

samples, from which 163 positive samples and 168 negative samples were extracted as the 

training dataset by LibSVM random down-sampling, whereas 30 positive samples and 1000 

negative sample were extracted as the test dataset. Zou et al. [26] adopted the same test 

dataset [22], but all of the samples that were not in the training set constituted the test dataset 

(163 positive samples and 7494 negative samples). Here, we adopt the same dataset, but the 

training dataset is extracted by weight, and the test dataset includes 30 positive samples and 

1000 negative samples. Triplet-SVM was proposed by Xue et al. [23], and LibID was 

proposed by Zou et al. [26]. The comparison results are shown in Fig. 7. 

 

 
Fig. 7 Comparison results of similar algorithms 

 

The comparison results show that the method we proposed considers more heavily the 

information of the negative samples such that the indicator sp value is higher for this method 

than for the other two methods. The indicator sn value is higher for Triplet-SVM because the 

positive samples in the training dataset are much more abundant than those in the test dataset; 

therefore, the over-fitting problem occurs. This problem is also mentioned in the Xue et al. 

[23], in which the indicator sn decreases when the same training dataset is used to predict 

other species. In addition, the improved method proposed can increase the indicator sp value 

compared with the values of the other two methods; meanwhile, the indicator sn is ensured, 

which is very important to molecular biology researchers. 
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Conclusion 
To handle the sample class imbalance problem in bioinformatics, an improved method, 

Stable-Adaboost, is proposed, which is based on Adaboost. This method is improved with 

respect to the initial weight assignment, the base classifier selection, the weight adjustment 

mechanism and other aspects. Furthermore, it adjusts the weight of the sample set to rapidly 

achieve a more balanced training set. In addition, it can ensure that the follow-up training set 

is maintained in a balanced state by optimizing the weight adjustment mechanism of 

incorrectly classified samples and stabilizing the classification performance. Stable-Adaboost 

can eliminate the redundancy of the transition phase, maintain the stability of the training 

dataset and improve the performance of ensemble classification. In bioinformatics research, 

specificity is often more important than sensitivity because high specificity can reduce the 

cost of experimental verification. The method proposed here ensures sensitivity while 

increasing specificity in non-coding RNA class prediction. 
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