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Abstract: In dairy herd management, it is significant and irreplaceable for veterinarians to 

make rapid and effective diagnosis of dairy cow diseases. Based on electronic medical records, 

deep learning (DL) has been widely used to support clinical decisions for humans. However, 

this method is rarely adopted in veterinary diagnosis. In addition, most DL models are driven 

by large datasets, failing to utilize the knowledge acquired by veterinarians in subjective 

experience, which is critical to disease diagnosis. To address these problems, this paper 

proposes a DL method for disease diagnosis of dairy cow: convolutional neural network 

(CNN) based on knowledge graph and transfer learning (KGTL_CNN). Firstly, the structural 

knowledge was extracted from a knowledge graph of dairy cow diseases, and treated as part 

of the inputs to the CNN based on knowledge graph (KG_CNN). Then, the model performance 

was enhanced through pre-training by transfer learning. To verify its performance, 

experiments were carried out on dairy cow clinical datasets. The results show that our model 

performed satisfactorily on disease diagnosis: the KG_CNN and KGTL_CNN achieved an F1-

score of 85.87% and 86.77%, respectively, higher than that of typical CNN by 6.58% and 

7.7%. The research results greatly promote the effective, fast, and automatic clinical diagnosis 

of dairy cow diseases. 
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Introduction 
 

In livestock farming, it is of great significance to prewar and diagnose dairy cow diseases 

rapidly and effectively. The early warning and diagnosis help to implement targeted treatment 

as soon as possible, thereby improving the health of dairy herds. In recent years, many wearable 
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and non-contact devices have been used to monitor and analyze individual behaviors of dairy 

cows, e.g., estrus [7, 20, 22], lameness [16, 27], rumination [9, 11, 28], and feeding [9], laying 

solid theoretical basis for early warning of diseases. 

 

Early warning is for timely diagnosis and treatment, and an effective diagnosis usually requires 

professional veterinarians to make judgments based on clinical symptoms and relevant 

examinations, whose importance is irreplaceable. Disease diagnosis for dairy cow is somewhat 

similar with that for human. But the primary diagnosis is rather complex, because animals 

cannot directly tell their feelings. With more knowledge and experience, general practitioners 

are more suitable for diagnosing diary cow diseases than specialists. However, due to the lack 

of knowledge, even an experienced veterinarian might misdiagnose uncomplicated diseases. 

 

Expert system is commonly used to assist with the diagnosis of diseases [2, 5, 6, 10, 14, 29]. 

Gao et al. [8] developed an ontology-based knowledge representation model for diagnosing 

equine diseases. Nusai et al. [25] established an uncertain knowledge representation model for 

swine disease diagnosis. Hamedan et al. [12] created set of fuzzy rules for predicting chronic 

kidney disease. Nugroho [24] applied the fuzzy Tsukamoto method to evaluate the risk level of 

endometritis disease in cattle. Because of their reasoning mechanism, the above methods are 

intuitive and explainable. However, they are complicated by the large number of high-quality 

and necessary rules or cases, and difficult to mine the hidden relations among clinical 

symptoms. 

  

At present, machine learning (ML) has performed well in diagnosing human diseases.  

The disease diagnosis model based on clinic medical records is increasingly meaningful in 

primary diagnosis. Maini et al. [23] applied five ML algorithms, including k-nearest neighbors 

(KNN), Naïve Bayes (NB), logistic regression (LR), adaptive boosting (AdaBoost), and random 

forest (RF), to predict early cardiovascular diseases based on the medical records of South India. 

Zhao et al. [31] relied on an RF model to forecast chronic kidney diseases. These methods are 

proved to be efficient, yet their performance hinges on the manually extracted features. 

 

Recently, deep learning (DL) has gained popularity in disease diagnosis. Ljubic et al. [19] 

combined long short-term memory (LSTM) and recurrent neural network (RNN) into a DL 

model to judge whether a patient will get Alzheimer’s disease. Pham et al. [26] built an LSTM 

model to predict healthcare trajectories from medical records. Due to the automatic feature 

extraction from massive labeled data, these DL methods are effective in disease diagnosis. 

Unfortunately, due to the lack of diagnosis experience of experts, the DL methods cannot 

effectively find the hidden correlations between diseases and symptoms that are not included 

in medical records. 

 

To address the problem, this paper proposes a DL-based intelligent disease diagnosis method 

for dairy cow, driven by veterinary knowledge and medical records. Specifically, the 

experimental knowledge was extracted from a knowledge graph oriented to dairy cow diseases, 

and used to guide the learning process of convolutional neural network (CNN). Next, our model 

was pretrained through transfer learning to achieve better performance on a limited number of 

real-world samples. 

 

The remain of this paper is organized as follows: Section 2 describes our datasets and the 

proposed method; Section 3 carries out comprehensive experiments, and analyzes the 

experimental results; Section 4 summarizes the research findings. 
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Methodology 
As shown in Fig. 1, our method primarily consists of three parts: data processing, CNN based 

on knowledge graph (KG_CNN), and CNN based on knowledge graph and transfer learning 

(KGTL_CNN).  

 

 

Fig. 1 Flow chart of our method, where MR1 is the generated dataset;  

MR2 is the real-world dataset;  

MedDC is the medical knowledge graph oriented to dairy cow;  

Sub-MedDC is the subgraph of MedDC. 

 

Firstly, the MR1 dataset was processed by the data processing module, and the vectors 

representing features and relevant knowledge were obtained. Secondly, the KG_CNN model 

was pretrained on the processed dataset, and the model parameters were obtained.  

Then, the MR2 dataset was divided into training data and testing data, and they were processed 

by the data processing module, respectively. Next, the KGTL_CNN model was trained on the 

training data of the MR2 dataset using the pre-trained model, and the diagnosis model was 

obtained after fine tuning parameters. Finally, the diagnosis model was validated by the testing 

data of the MR2 dataset. 

 

Apart from the features of medical records, our model also utilizes the experimental knowledge 

between symptoms and diseases of dairy cow. In addition, our model can effectively learn from 

a limited number of samples through transfer learning. 
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Datasets 
Two medical record sets of dairy cow, namely MR1 and MR2, were adopted for this work. 

MR1 was used to pretrain the KG_CNN, and MR2 to train and test KGTL_CNN. Table 1 

presents further details and compares the two datasets. 

 

Table 1. Description of the datasets 

Number of medical records 
MR1 MR2 

18,580 3,069 

Types  

of diseases 

Mastitis 2,816 (15.16%) 920 (29.98%) 

Forestomach atony 2,679 (14.42%) 482 (15.71%) 

Rumen indigestion 3,084 (16.60%) 373 (12.15%) 

Gastroenteritis 3,109 (16.73%) 762 (24.83%) 

Urmen acidosis 3,252 (17.50%) 281 (9.16%) 

Abomasum dislocation 3,640 (19.59%) 251 (8.18%) 

 

(1) MR1 Datasets 

The MR1 dataset was manually generated in the following steps [30]: first, the descriptions of 

various dairy cow diseases, including symptoms, pathological changes, and differential 

diagnoses, were extracted from professional books, and compiled into a standard medical record 

for each disease. According to punctuations and degree of association between contexts,  

each standard medical record was split into several short sentences. For each set of sentences, 

half of them were selected each time by method of simple random sampling without 

replacement [30], and organized into a medical record of dairy cow. Through multiple 

sampling, a large number of visual medical records were collected for different diseases. 

 

(2) MR2 Datasets 

The MR2 dataset includes real-world medical records of 832 dairy cows from 13 large-scaled 

breeding farms in Heilongjiang, China. These records have been maintained by Dairy 

Association of Heilongjiang Province (DAHLJ), one of our partners. Each medical record 

contains clinical symptoms, laboratory test, diagnosis, disposal measure, medication use,  

and outcome after treatment.  

 

Data processing 
Prior to applying the pre-training model, the MR1 dataset was preprocessed, and the MR2 

dataset would also be preprocessed before used to train the proposed model. As shown in Fig. 1, 

the data processing includes feature selection and knowledge extraction. 

 

(1) Feature selection 

The medical record of each dairy cow was processed on the Language Technology Platform 

(LTP) of Harbin Institute of Technology (HIT) [4], using the professional dictionary of diseases 

and symptoms. Every medical record went through the extraction of feature keywords, text 

segmentation, part-of-speech (POS) tagging, recognition of named entities, and the removal of 

stop words and meaningless words. In this way, a set of keywords about disease features was 

obtained as 𝑥 = [𝑣1, 𝑣2, … , 𝑣𝑛], where 𝑛 is the number of keywords and 𝑣𝑖 is the 𝑖-th keyword. 

 

Then, all the extracted features were converted into a vector matrix. The skip-gram model of 

Word2Vec [13] was adopted to transform each 𝑣𝑖 into its vector representation by looking up 

the embedding matrix 𝒗𝒊 ∈ ℝ𝑘, where 𝑘 is the dimensions of the word vector.  
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Let 𝑿𝟏:𝒏 ∈ ℝ𝑘×𝐷 = 𝒗𝟏⨁𝒗𝟐⨁ … ⨁𝒗𝒏 be the embedding matrix of a medical record, where 𝐷 

is the number of features. 

 

(2) Knowledge extraction 

Based on the keywords acquired in the previous subsection, the relevant knowledge was 

extracted from disease knowledge graph of dairy cow, and transformed into vector 

representations, too. 

 

As shown in Fig. 2, a knowledge graph MedDC typically contains empirical facts and 

relationships between symptoms and diseases of dairy cow. It can be denoted as a large set of 

triples (entity(head)-relation-entity(tail)): MedDC = 〈ℎ, 𝑟, 𝑡〉, where ℎ ∈ ℰ , 𝑟 ∈ ℛ , and 𝑡 ∈ ℰ 

are the head, relation, and tail of a knowledge triple, respectively. The set of entities and set of 

relations in the MedDC are denoted as ℰ and ℛ, respectively. 

 

 

Fig. 2 Illustration of the knowledge graph MedDC 

 

Given the embedding matrix 𝑿𝟏:𝒏 of a medical record, the similarity between 𝒗𝒊(𝑖 = 1,2, … , 𝑛) 

and entity ℎ  or 𝑡  in MedDC can be calculated by entity linking [21]. The set of 𝑖  relevant 

entities can be defined as: 

 

𝜀 = {𝑒𝑖|𝑒𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒∈𝑀𝑒𝑑𝐷𝐶𝑆𝑐𝑜𝑟𝑒(𝑒, 𝒗𝒊), 𝑖 = 1,2, … , 𝑛}, 

 

where 𝑆𝑐𝑜𝑟𝑒(𝑒, 𝒗𝒊) is the cosine similarity between 𝑣𝑖 and an entity 𝑒 in MedDC. 
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For the input entity 𝑒𝑖 ∈ 𝜀, the 1-hop ripple set can be extracted to form a sub knowledge graph: 

 

𝑆𝑖 = {(ℎ, 𝑟, 𝑡)|(ℎ, 𝑟, 𝑡) ∈ 𝑀𝑒𝑑𝐷𝐶 and (ℎ ∈ 𝑒𝑖  𝑜𝑟 𝑡 ∈ 𝑒𝑖)}, 𝑖 = 1,2, … , 𝑛. 

 

Suppose 𝜀(𝑒𝑖) = {𝑒|𝑒 ∈ (ℎ, 𝑡) and ((ℎ, 𝑟, 𝑒𝑖) ∈ 𝑆𝑖 𝑜𝑟 (𝑒𝑖, 𝑟, 𝑡) ∈ 𝑆𝑖)}  is the set of context 

entities of 𝑒𝑖, with 𝑚 being the number of entities of 𝜀(𝑒𝑖); 𝑒𝑖𝑗 ∈ 𝜀(𝑒𝑖) (𝑗 = 1,2, … , 𝑚) is the 

𝑗-th relevant entity of 𝑒𝑖; 𝒆𝒊𝒋 is the embedding vector of 𝑒𝑖𝑗, which was obtained by knowledge 

representation learning using the TransD model [15].  

 

The semantic similarity between words is positively correlated with the similarity between the 

real number vectors mapped in the same space vector. Therefore, the context vector can be 

represented by the mean of all context entities of 𝑒𝑖: 

 

𝒆𝒊 =
1

𝑚
∑ 𝒆𝒊𝒋𝑒𝑖𝑗∈𝜀(𝑒𝑖) , 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑚.  

 

KG_CNN 
For each feature 𝑣𝑖, its entity vector can be expressed as 𝒆𝒊 ∈ ℝ𝑑×1, and the context vector as 

𝒆𝒊 ∈ ℝ𝑑×1,where 𝑑 is the dimensions of entity vector. Let 𝑞(𝒆𝒊) be the vector of 𝒆𝒊 after entity 

alignment, and 𝑸𝟏:𝒏 be the aligned entity vector of a medical record: 

 

𝑸𝟏:𝒏 = 𝑞(𝒆𝟏)⨁ 𝑞(𝒆𝟐)⨁ … ⨁𝑞(𝒆𝒏).  

 

Let 𝑞(𝒆𝒊) be the context vector of 𝒆𝒊 after entity alignment, and 𝑸𝟏:𝒏 be the aligned context 

vector of a medical record: 

 

𝑸𝟏:𝒏 = 𝑞(𝒆𝟏)⨁𝑞(𝒆𝟐)⨁ … ⨁𝑞(𝒆𝒏),  

 

where 𝑞 is the transfer function for word-entity alignment:  

 

𝑞(𝑒) = 𝑡𝑎𝑛(𝑴𝑒 + 𝑏),  

 

where 𝑴 ∈ ℝ𝑘×𝑑 is the transfer matrix; 𝑏 ∈ ℝ𝑘×1 is the deviation. 

 

Herein, 𝑿𝟏:𝒏, 𝑸𝟏:𝒏, and 𝑸𝟏:𝒏 are of the same dimension. The three vector matrices were aligned 

and superposed, and then imported to our CNN model as the multi-channel inputs: 

 

𝑿 = [𝒗𝟏𝑞(𝒆𝟏)𝑞(𝒆𝟏)][𝒗𝟐𝑞(𝒆𝟐)𝑞(𝒆𝟐)] … [𝒗𝒏𝑞(𝒆𝒏)𝑞(𝒆𝒏)] ∈ ℝ𝑘×𝑛×3.  

 

To extract sufficient features of 𝑿, several convolution kernels with different window sizes 

were employed to acquire more semantic information. Let 𝒘 ∈ ℝℎ×ℎ be a convolution kernel, 

where ℎ is the size of 𝒘, and 𝑿𝒊:𝒊+𝒑−𝟏 be the vector matrix from 𝑣𝑖 to 𝑣𝑖+𝑝−1. Then, the result 

of 𝒘 acting on 𝑿𝒊:𝒊+𝒑−𝟏 can be defined as: 

 

𝐶𝑖
𝑡 = 𝑓(𝒘𝑿𝒊:𝒊+𝒑−𝟏 + 𝑏),  

 

where 𝑓(∗) is the rectified linear unit (ReLU) function [13]; 𝑏 is the deviation; 𝑡 is the serial 

number of convolution kernels. 
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Then, max-over-time pooling [32] was performed to select the maximum of the output feature 

map:  

 

�̃�𝑡 = 𝑚𝑎𝑥 {𝐶1
𝑡, 𝐶2

𝑡, … , 𝐶𝑛−𝑝+1
𝑡 }.  

 

Combining the responses of all the �̃�𝑡, the representation of a medical record 𝑥 can be obtained 

as: 

 

𝒆(𝒙) = �̃�1⨁�̃�2⨁ … ⨁�̃�𝑙, 

 

where 𝑙 is the number of convolution kernels. 

 

Let 𝑝𝑟  be the relevance probability by comparing 𝒆(𝒙)  to the 𝑟 -th disease. After being 

normalized by Softmax, the 𝑝𝑟 can be expressed as: 

 

𝑝𝑟 = Softmax(𝑠𝑟𝑒𝑟(𝑥) + 𝑏𝑟) =
𝑒𝑥𝑝 (𝑠𝑟∙𝑒𝑟(𝑥)+𝑏𝑟)

∑ 𝑒𝑥𝑝 (𝑠𝑖∙𝑒𝑖(𝑥)+𝑏𝑖)𝑛
𝑖=1

,  

 

where 𝑠𝑖 and 𝑏𝑖 are the parameter and deviation corresponding to the 𝑖-th disease, respectively; 

𝑛 is the number of disease types.  

 

Here, adaptive moment estimation (ADAM) [1] is adopted to minimize the objective function 

in model training. The network parameters were updated iteratively through error back 

propagation until the model met the fitting requirements. 

 

KGTL_CNN 
As shown in Table 1, the MR2 dataset is much smaller than the MR1 dataset. Thus, this dataset 

cannot be directly applied to train the DL model. To solve the problem, the performance of our 

disease diagnosis model was improved through transfer learning [18]. 

 

Firstly, the MR2 dataset was processed by feature selection and knowledge extraction, 

producing the word vector, entity vector and context vector of each real-world medical records 

of dairy cow. Secondly, 80% of the dataset were randomly selected, and imported to the pre-

trained KG_CNN, while the remaining 20% were treated as the test data. Thirdly, the network 

parameters were fine-tuned, and the softmax layer of KG_CNN was replaced with a fully 

connected layer to re-train the network. Finally, the KGTL_CNN was obtained after constant 

iterations and updates. 

 

Performance measures 
The performance of our method was evaluated in terms of Accuracy , Precision , Recall ,  

and F1:  

 

Accuracy =
TP+TN

TP+FP+TN+FN
× 100%,  

 

Precision =
TP

TP+FP
× 100%,  

 

Recall =
TP

TP+FN
× 100%, 
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F1 =
2×Precison×Recall

Precision+Recall
× 100%,  

 

where TP and TN are the numbers of positive and negative samples that are correctly classified, 

respectively; FP is the number of negative samples that are incorrectly classified into positive 

samples; FN is the number of positive samples that are incorrectly classified into negative 

samples. 

 

Experiments and results 
Several experiments were conducted to verify the importance of each component of our model. 

The models without transfer learning were evaluated on real-world dataset, whereas the other 

models were evaluated on both the generated dataset and real-world dataset. The results of our 

model were compared with those of state-of-the-art models. The hyperparameters of our model 

were tuned through cross validation. 

 

Our model 
Our model was compared with the state-of-the-art models that have been applied in disease 

diagnosis. The contrastive models were divided into two groups: traditional models, and neural 

models. The performance comparison is shown in Table 2. 

 

Table 2. Performance of our model and the state-of-the-art models 

 Models Accuracy, (%) Precision, (%) Recall, (%) F1, (%) 

Traditional 

model 

SVM 75.13 72.46 74.83 73.63 

RF 72.83 72.19 71.63 71.91 

DT 71.53 71.70 68.32 69.97 

Neural 

model 

RNN 80.65 80.56 79.25 79.90 

CNN 81.22 80.93 80.21 80.57 

Our model 

KG_CNN 86.22 85.52 86.22 85.87 

TL_CNN 84.55 84.74 83.14 83.93 

KGTL_CNN 87.04 86.02 87.53 86.77 

Note: SVM – support vector machine; RF – random forest; DT – decision tree; RNN – 

recurrent neural network; CNN – convolutional neural network; KG_CNN – CNN-based on 

knowledge graph; TL_CNN – CNN-based on transfer learning; KGTL_CNN – CNN-based 

on knowledge graph and transfer learning. 

 

As shown in Table 2, the traditional models did not perform well, due to the reliance on many 

generated features. Among them, the SVM realized an F1-score of 73.63%, 2.39% and 5.23% 

higher than RF and DT, respectively. The neural models performed better than the traditional 

models, because they are capable of capturing more features by detecting the data relationships 

between different disease symptoms. Specifically, the RNN performed similarly with CNN, 

which achieved an excellent diagnosis effect with an F1-score of 80.57%. Thus, neural models 

are available for our task. Therefore, the CNN was adopted to train our network, and learn the 

internal representations between the original inputs and the final outputs in the DL. 

 

Further, all the hyper parameters of our model were tuned via 5-fold cross-validation. 

The optimized hyper parameters are recorded in Table 3. 

 

The experimental results show that our method achieved an overall F1-score of 86.77%, up by 

7.7% and 17.85% from that of CNN and SVM, respectively. Thus, our model outperforms all 
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the contrastive methods. Compared with the typical CNN, KG_CNN and TL_CNN improved 

the F1-score by 6.58% and 4.17%, respectively, reflecting the feasibility of diagnosing diseases 

through DL with the aid of knowledge graph and transfer learning. 

 

Table 3. Optimized hyperparameters of our model 

Hyperparameter Description Value 

𝒌 Dimension of word vector 50 

𝒅 Dimension of entity vector 50 

𝒉 Size of convolution kernel 2, 3, 4 

l Number of convolution kernels 150 

dropout_rate Dropout rate 0.75 

learing_rate Learning rate 0.2 

batch_size Batch size 16 

 

Knowledge-based models 
This subsection further discusses the effects of introducing experimental knowledge from 

medical knowledge graph of dairy cow into CNN. Table 4 compares the typical CNN (single 

CNN) model with our knowledge-based CNN models, which are entity_CNN (CNN with entity 

embedding), context_CNN (CNN with context embedding), and KG_CNN (CNN with entity 

and context embedding), respectively. 

 

Table 4. Comparison of typical CNN and our knowledge-based models 

Models Accuracy, (%) Precision, (%) Recall, (%) F1, (%) 

CNN 81.22 80.93 80.21 80.57 

entity_CNN 84.05 83.73 83.34 83.53 

context_CNN 83.24 83.11 82.18 82.64 

KG_CNN 86.22 85.52 86.22 85.87 

 

As shown in Table 4, the knowledge-based CNNs, which were prepared under the knowledge 

extraction mechanism, outshined the typical CNN, revealing the prominent role of the 

knowledge extraction module in the experiment. The results demonstrate that our KG_CNN 

model realized an F1-score of 85.87%, better than that of the typical CNN. The entity_CNN 

achieved an F1-score of 83.53%, which improves the performance of CNN by 3.67%. 

Similarity, F1-score of the context_CNN model reached 82.64%, which is 2.57% higher than 

that of CNN. Moreover, the KG_CNN improved the performance of CNN by 6.58% in terms 

of F1-score. In addition, KG_CNN model outperformed entity_CNN and context_CNN by 

2.8% and 3.91%, respectively. 

 

It can be inferred from the above analysis that either entity_CNN or context_CNN can obtain a 

better performance than typical CNN, the reason is that the medical knowledge graph contains 

lots of disease and symptom entities. Once such knowledge is imported to the CNN, the network 

could learn the text representation from the rich semantic information, and give full 

consideration to the influence of different symptom features over disease classification, 

resulting in better classification performance. As for the better F1-score of our method, the good 

performance is mainly attributed to the entity and context vectors adopted in KG_CNN.  

These two parts are directly associated with each other. This structural information enhances 

the semantic representation of the medical records, and improves the ability of the model to 
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obtain high-level text features. Therefore, it is feasible and effective to introduce structural 

knowledge of veterinary practices into disease diagnosis of dairy cow. 

 

Table 5 compares our KG_CNNs represented by different knowledge graph embedding 

methods, including TransE [3], TransH [33], TransR [17], and TransD [15]. 

 

Table 5. Comparison between KG_CNNs represented  

by different knowledge graph embedding methods 

Models Accuracy, (%) Precision, (%) Recall, (%) F1, (%) 

TransE-KG_CNN 85.83 84.64 86.51 85.56 

TransH-KG_CNN 84.97 84.10 85.13 84.61 

TransR-KG_CNN 85.42 84.65 85.47 85.06 

TransD-KG_CNN 86.13 85.28 86.33 85.80 

 

As shown in Table 5, the KG_CNN trained by TransD achieved better performance than the 

model trained by other knowledge graph embedding methods, as evidenced by its high F1-score 

(85.80%). The reason is that TransD is more complex than TranE, TransH, and TransR in 

structure. The sophisticated structure can effectively capture the nonlinear relationships 

between structured knowledge, and reduce the semantic loss in vector quantization process. 

As a result, it is possible to acquire high-quality entities and entity context vectors. If these are 

imported to KG_CNN, the disease diagnosis will be much more effective. 

 

Conclusions 
Based on medical records, this paper proposes a dairy cow disease diagnosis method through 

DL driven by knowledge graph and transfer learning. Our method introduces the empirical 

knowledge of veterinarians to the CNN in the form of a knowledge graph, such that the network 

could learn more relevant features through the training on medical records. To further improve 

its performance, the disease diagnosis model was pretrained via transfer learning on the data 

generated from professional books. Experimental results demonstrate that our model is 

effective in clinical diagnosis of dairy cow. In the future, the authors will improve the proposed 

model with more complex architecture of the network and better medical knowledge. 
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