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Abstract: The aim of the study is to identify and evaluate predictors of recurrent paroxysms 

of atrial fibrillation (AF) paroxysms based on data from the preprocedural period among 

personal indices, history, comorbidities, ultrasound examination, and morphological 

components of f-waves, such as spectral amplitude and frequency. 39 patients with antral 

pulmonary vein isolation using radiofrequency or cryoenergy were included. Spectral 

analysis of f-waves was performed by fast Fourier transform of the ECG signal after 

suppression of the T-wave and QRS-complex. The performed U-test for the difference 

between the amplitude and frequency indicators in the groups without and with recurrence of 

AF shows a significant difference between the amplitude values in the two studied groups of 

patients. Through a stepwise discriminant analysis of a total of 14 indicators, 5 reliably 

separated groups without and with recurrence were determined: Echo LV-EF, spectral 

amplitude of f-waves, heart failure, Stroke/TIA, diabetes. The discriminator synthesized on 

these indicеs classified among the 39 patient – 25 without relapse (group 1) and 14 with 

relapse (group 2), 3 patients wrong from group 1 to group 2 (false positive), or 12%, and  

1 patient was wrong from group 2 to group 1 (false negative), or 7.1%. These results give 

grounds to accept the hypothesis that it is possible to develop a decision rule for determining 

the degree of risk of post-procedural recurrence of AF from pre-procedural period data. 

 

Keywords: Atrial fibrillation, Catheter Ablation, Post-procedural recurrence of atrial, 

Fibrillation. 

 

Introduction 
Atrial fibrillation (AF) is the most common clinically manifested arrhythmia in the developed 

world, with one in four middle-aged individuals in Europe and the USA developing AF [8]. 

Although with no immediate risk to the patient’s life, atrial fibrillation leads to an increased 

risk of embolic events and ischemic stroke. AF is one of the causes of manifestations of heart 
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failure, impaired quality of life, cognitive dysfunction and depression [12]. Restoration and 

maintenance of sinus rhythm is a key therapeutic goal in patients with AF. 

 

Since the introduction of the transcatheter ablation technique in 1998, the technology and 

technique for performing the procedure have evolved considerably, and catheter ablation 

(CA) is currently used with high a class of indications to improve symptomatology in cases of 

paroxysmal AF in symptomatic patients, in whom antiarrhythmic therapy is ineffective.  

The superiority of CA over antiarrhythmic therapy has been demonstrated in large 

randomized trials. From the CABANA (Catheter Ablation vs. Anti-arrhythmic Drug Therapy 

for Atrial Fibrillation Trial) [14], which compared drug therapy versus pulmonary vein 

isolation in patients with AF, it appears that the initial postprocedural success rate of 

pulmonary vein isolation in AF is high, but the long-term efficacy of the procedure remains a 

challenge, thus finding predictors of procedure success is of great importance.  

 

Several predictors of recurrence have been identified in various studies. In a publication, 

Sultan et al. [20] described several statistically significant predictors of AF recurrence after 

ablation, based on data from 3703 patients undergoing treatment for AF at 40 German centers, 

with a mean follow-up of 463 days. The data suggest that the clinical type of AF, comorbidities 

such as impaired renal and cardiac function, are strong predictors of AF recurrence. 

 

Several echocardiographic parameters have been evaluated as a predictor of AF recurrence. 

In a literature review by Liżewska-Springer et al. [10], twenty-one articles were analysed and 

several characteristics were outlined. Left atrial diameter, right atrial size, indexed right atrial 

volume, left ventricular ejection fraction, and diastolic dysfunction had a significant 

preprocedural predictive value and outlined borderline values as indices predicting a higher 

incidence of AF recurrence after ablation. The presence of left ventricular (LV) systolic 

dysfunction also decreased the success rate of the procedure. 

 

The concept of pulmonary vein volume, measured by computed tomography as a predictor of 

AF recurrence, was investigated by Shimamoto et al. [18]. The study demonstrated that larger 

total pulmonary vein volume and ostial pulmonary vein area were associated with  

AF recurrence after radiofrequency catheter ablation (RFA).  

 

In addition to clinical and imaging characteristics, electrocardiographic (ECG) characteristics 

have also been analysed as a predictor of AF recurrence. Electrocardiographic findings in  

AF are characterized by the absence of P-waves on the cardiogram, an irregular R-R interval, 

and the presence of small fibrillation waves called f-waves. It is the f-waves that reflect atrial 

activity giving rise to AF [16]. The question of whether the morphology of these waves could 

predict atrial remodeling has been thoroughly investigated. For example, low-amplitude  

f-waves in leads aVF and V1 have been shown to be associated with late AF recurrence after 

ablation. On ECG, the amplitude of f-waves depends on the magnitude of the baseline 

voltage, which is related to the size of the remaining viable atrial myocardium, hence to the 

substrate for arrhythmia [4].  

 

Since f-waves are a natural marker of AF in the ECG, it is natural to study their 

morphological features in more detail as possible predictors of recurrence after ablation. 

According to Park et al. [15], f-wave amplitude can be used to differentiate patients with long-

standing persistent AF from other AF groups. The use of more than one lead has been 

proposed to increase predictive ability, with the simultaneous use of I, V1, V2, V5 showing 

the highest ability [23]. A publication by Nault et al. [13] reported that high f-wave amplitude 



 INT. J. BIOAUTOMATION, 2022, 26(1), 37-66 doi: 10.7546/ijba.2022.26.1.000869 
 

39 

calculated from V1 was a predictor of intraprocedural arrhythmia termination in patients with 

persistent AF, as well as of maintenance of sinus rhythm at 12 months follow-up. 

The measurement of the amplitude of the f-waves in the publication is done manually, which 

implies large deviations depending on the respective researcher. 

 

These features, as well as the importance of electrocardiographic analysis in patients with AF, 

determine the need for a more detailed study of the prognostic value of morphological features 

of f-waves in patients with AF in the preprocedural period – spectral amplitude and frequency. 

 

In this study, we aimed to identify and evaluate predictors of recurrent AF paroxysms, using 

data from the preprocedural period among personal indices, history, comorbidities, ultrasound 

examination, and morphological components of f-waves, such as spectral amplitude and 

frequency. 

 

Materials and methods 

Patient collective 
A total of 39 patients were included in the follow-up, of whom 30 were men (76.9%) and  

9 were women (23.1%). The mean age of the participants was 61 years (± 6.94; 48-74). 

The mean body mass index in the study population was 29.9 (± 4.88). Paroxysmal AF was the 

most common clinical form of AF in 24 patients (61.5%), 10 patients had persistent  

AF (25.6%), and 5 patients had the procedure against the background of long-standing 

persistent AF (12.8%). The mean CHADS VASc score [6] in the study group was 2 (± 1.36). 

Thirty-three (84.6%) of the patients were found to have concomitant arterial hypertension,  

8 (20.5%) patients had concomitant diabetes mellitus, and 4 (10.25%) patients were diagnosed 

with heart failure at the time of initiation of follow-up, and we considered patients with 

manifestations of heart failure on the background of reduced ejection fraction and those with 

moderately reduced ejection fraction, i.e., six (15.4%) patients had known ischemic heart 

disease, and 1 (2.56%) patient had undergone bypass surgery in the past. For patients with 

ischemic heart disease, we considered those with known coronary stenosis objectified by 

imaging or those with coronary revascularization. Of the group of patients, 1 (2.56%) had a 

history of rheumatic disease and 2 (5.12%) had moderate mitral insufficiency. 

 

Patients in the formed database meet the following inclusion and exclusion criteria: 

Inclusion criteria 

 Paroxysmal, persistent or long-standing persistent AF documented by 12-lead ECG. 

 High symptomatic class at the time of seizures, with EHRA IIB as a minimum for 

inclusion in follow-up. 

 Ability to record an electrocardiogram during a seizure. 

 Patients undergoing antiarrhythmic therapy with AF recurrences on background 

therapy. 

 Patients suitable for ablation according to the current recommendations of the 

European Society of Cardiology [12]. 

 Ages 18 to 75. 

 

Exclusion criteria 

 Asymptomatic AF. 

 Presence of a reversible cause of AF (endocrine disease; recent surgery; seizure due to 

alcohol intoxication, acute coronary syndrome). 

 Previous ablations or MAZE procedure on the occasion of AF. 
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 High functional class heart failure (NYHA IV) or high functional class angina  

(CCS III-IV). 

 Comorbidities with life expectancy less than 1 year. 

 Unwillingness or contraindication to take anticoagulant therapy. 

 History of heparin-induced thrombocytopenia. 

 

In all patients, antral pulmonary vein isolation (PVI) was performed using radiofrequency or 

cryo energy, with additional lesions in the left and right atrium (LA; RA) at the operator’s 

discretion. An irrigated ablation catheter was used for RFA and a dedicated cryoballoon was 

used for cryoablation. 

 

A high power-short duration (HPSD) protocol was used in RFA, while controlling the lesions 

performed by ablation index. The ablation index is a numerical value, derived from the 

catheter contact force, energy and ablation time. The target for lesions was an ablation index 

of 500 on the anterior wall of the LP and 400 on the posterior wall. The energy used was 

50 watts in all zones, irrigation rate 17 ml/min during ablation with a target contact force of 

10 g. Point applications were marked on the three-dimensional anatomical map as points on 

the surface or as three-dimensional spheres with a diameter of 6 mm. 

 

The high energy, short duration lesion approach, guided by an ablation index, was based on 

the FAFA study protocol [3]. 

 

Processing of ECG signals for spectral analysis of f-waves 
A personal computer ECG system was used [19]. The system receives the signals from all 

electrodes synchronously through an additional isolated amplifier. It removes the network 

interference and suppresses the zero line drift, presents the recorded signal in real time on the 

screen. Received signals are recorded into the computer’s memory and, after the recording is 

complete, saved to the hard disk for further processing and analysis. The system has the 

capability of real-time visualization of the standard 12 ECG leads. The signal is recorded in 

its original form, i.e., raw, for further processing and analysis outside real time.  

 

The computer system has the following characteristics: 

 synchronous recording of selected leads (up to 12 leads), with high frequency 

sampling (up to 2 kHz); 

 real-time ECG signal display with network interference filtering and suppressed zero 

line drift; 

 outside real time, the recorded signals are processed and reviewed and QRS detection 

is performed. 

 

The system consists of two modules: an external isolated amplifier (for electrical safety), and 

a receiving part – a personal computer with specialized software. The connection between the 

two modules is made using a USB port. The isolated module operates at a preset sampling 

rate (up to 2 kHz), with a resolution of 24 bits per channel, which is provided by  

a 24-bit multi-channel analog-to-digital converter. Actions to obtain frequency spectra of 

ECG recordings, taken before ablation of patients, were performed in the following sequence 

(procedures were developed in a Matlab 2016 environment (Mathworks Inc.)):  

 

1. Read signals from the database that are registered in multichannel format, with a 

sampling rate of 2 kHz and an amplitude resolution of 0.047684 V (24-bit analog-to-

digital conversion with a dynamic range of 800 mV).  



 INT. J. BIOAUTOMATION, 2022, 26(1), 37-66 doi: 10.7546/ijba.2022.26.1.000869 
 

41 

2. Pre-processing of ECG signals, which includes: 

2.1. Calculation of the leads of a standard 12-lead ECG from the baseline 8: {I, II, III = 

II-I, avR = – (I + II)/2, avL = I-II/2, avF = II-I/2, V1, V2, V3, V4, V5, V6}. 

2.2. Reduce the sampling rate from 2000 Hz to 500 Hz, by taking 1 out of every  

4 consecutive readings. 

2.3. Selection of a representative segment for analysis with a duration of 60 s,  

in a low-noise section of the recording. Visual evaluation of the entire recording is 

applied, and the selected segment includes a section in which there is no signal loss 

or saturation in any of the channels, no large dynamic amplitude changes due to 

motion artifacts, or no zero-line drift. This preselection is made to ensure an input 

signal that would minimize parasitic components in the spectrum from external 

sources unrelated to cardiac activity. 

2.4. Selection of a representative lead applying a criterion of high amplitude of visible 

atrial waves.  

2.5. Eliminate the constant (DC) offset of the entire ECG signal by linearly subtracting 

the point amplitude from the isoelectric line calculated for each lead at the beginning 

of the recording.  

2.6. Network interference filtering (50 Hz) by averaging filter (moving averaging) 

(averages 10 points, covering one period of network interference at a sampling rate 

of 500 Hz). 

2.7. A low-pass 1st order Butterworth filter with a cutoff frequency of 150 Hz, which was 

chosen according to the accepted convention for the upper cutoff frequency in 

diagnostic ECG analysis (International Electrotechnical Commission (IEC) Standard) 

[7].  

2.8. For the QRS detector: a 1st order high-pass Butterworth filter with a cutoff frequency 

of 2 Hz, which is selected with a high cutoff frequency adopted in monitoring  

ECG systems operating in high drift conditions. Such a filter provides higher noise 

immunity of the QRS detector.  

2.9. For frequency analysis: a 1st order high-pass Butterworth filter with a cutoff 

frequency of 0.1 Hz, in order not to filter out low-pass components, which are the 

subject of analysis in this work. 

3. QRS detection applied to the selected representative lead.  

3.1. The QRS detector was implemented according to the procedure described in 

reference [5, 22]. It was developed for real-time systems, where the amplitudes of the 

recorded successive ECG signal discretes are compared with three thresholds, 

calculated based on maximum positive amplitude, maximum negative amplitude and 

maximum slope within a previous RR interval. The amplitude and slope thresholds 

are dynamic, and they decrease nonlinearly with a certain adaptation factor from a 

maximum to a minimum level, following the probability with which a new  

QRS-complex is expected to occur. The principle of dynamic threshold change and 

the criteria for QRS detection have been optimized in [5, 22]. There, the high 

sensitivity and accuracy of the positive prediction of the QRS detector (about 99.6%) 

has been demonstrated and tested on public databases (AHA, MIT-BIH Arrhythmia, 

European ST-T). 

3.2. The QRS detector makes a decision to locate the point of the QRS-complex with the 

highest (in absolute value) amplitude (called Rpeak below). The maximum amplitude 

is considered as an indicative benchmark that ensures synchronous registration of 
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consecutive QRS-complexes in the same area of the complex (at the same time 

within a cardiac cycle). The purpose of this approach is to avoid fluctuation of  

RR intervals resulting from non-synchronous detection in different areas of the  

QRS-complex (phase offset).  

4. Synthesis and measurement of waves in a synchronously averaged complex:  

4.1.  Calculation of a mean heart rate (HR), reflecting the mean RR-interval within the 

analysed representative segment:  

HR = 60Fs/mean(RR(i)), where: 

i = 1, 2, ..., N – 1, with N is the number of RR-intervals; 

RR(i) = Rpeak(i + 1) – Rpeak(i) is the value of the ith RR-interval; 

Fs = 500 Hz is the sampling frequency.   

4.2.  Separation of windows around each recorded QRS-complex with width  

BeatWindow = [Rpeak – 150 ms; Rpeak + minRR], where Rpeak is the point of 

recorded peak of QRS-complex, minRR is the minimum RR-interval recorded within 

the analyzed representative segment. The windows are synchronous for all leads, 

using Rpeak on the representative lead as a benchmark. 

4.3.  Averaging all windows within the analysed representative segment and computing  

a synchronously averaged complex for each outflow:  

AverageBeat = sum(BeatWindow)/N 

4.4 Detection of Q, J points for the beginning and end of QRS on the averaged complex 

of each lead by the method of Christov and Simova [5], which is distinguished by 

high accuracy.  

4.5.  Detection of Q, J, T-end points for the QRS start and end and T-wave end on the 

averaged complex of each lead by the method of Christov and Simova [5]. 

4.6.  Resetting the averaged complex of each lead during the low-amplitude section of the 

TQ interval, as shown in Fig. 1. The goal is not to average a signal during the 

isoelectric loop representative of atrial activity. 

5. Synthesizing ECG signal for frequency analysis:  

5.1.  T-wave suppression in the input ECG signal by subtracting the averaged AverageBeat 

complex (in the section after the J-point) from each recorded  

QRS complex, as shown in Fig. 2. The synchronization between AverageBeat and 

QRS complexes follows the concept of Rpeak alignment of the representative lead. 

The subtraction of AverageBeat from the input signal is done separately for each lead.  

5.2. Suppression of the QRS-complex in the input ECG signal by linear interpolation of 

the amplitudes between the beginning and the end of each recorded QRS-complex, as 

shown in Fig. 3. The times measured for the Q and J points on the averaged complex 

are used as the start and end of each recorded QRS-complex. The procedure is 

applied independently with the Q and J measurements for each lead.  

5.3.  Frequency analysis by fast Fourier transformation of the ECG signal after T-wave 

and QRS-complex suppression. The Matlab library function fft(ECG) was applied 

and all points of the input signal were passed to it. The amplitude-frequency 

spectrum was analysed.  

 

Statistical methods used. Classification of patients with and without AF recurrence after 

CA, according to data from the preprocedural period. Stepwise linear discriminant analysis.  

Statistical estimates for indicators from descriptive statistics were used in the study. We used 

the non-parametric Mann-Whitney U-test to compare two samples of variable values 

because it is applied when the samples have small and different numbers of data and do 
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not follow a normal distribution. In our study, the qualitative variable for comparison was 

the presence/absence of AF recurrence after ablation; the quantitative variables were the 

values of the spectral characteristics of the f-waves (amplitude and frequency) and data from 

the included patients’ clinical preprocedural parameters. For the distributions of parameters 

analysed by histograms, the theoretical normal distributions for the obtained statistics were 

calculated using the Kolmogorov-Smirnov test. 

 

 

Fig. 1 Detection examples of Q(o), J(o) and Tend(*) points on the averaged complex  

(black line) of different leads. Shown is the strategy for resetting the averaged complex  

in a low-amplitude section after the end of the T-wave,  

in which predominantly atrial activity is expected to be visible. 

 

 

Fig. 2 Example of T-wave suppression by subtraction of an averaged complex  

(after the J -point). In the figure, Rpeak(o) are labelled,  

which are used to synchronize the averaged complex. 

 

 

Fig. 3 The signal from Fig. 2, on which the QRS-complexes were further suppressed  

by linear interpolation between the origins and termini of all QRS-complexes,  

using the measured Q and J times of the averaged complex 
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Discriminant analysis (DA) [9] is a statistical method designed to study differences between 

two or more groups of objects using data on the diversity of several attributes that distinguish 

these objects from each other. A typical task of discriminant analysis is to identify those 

features that best discriminate between objects belonging to different groups. We used 

stepwise discriminant analysis (SDA) to create a model that allowed the most complete 

discrimination between the two data sets, comprising of patients with and without  

AF recurrences after ablation.  

 

The reasons to use DA were:  

 to determine, on the basis of the available data, a constellation of indicators that are 

informative for the correct classification of patients into the two groups;  

 to establish the involvement of the spectral indices of f-waves in this constellation, 

as well as their weight among the other indicators in the constellation. 

 

For statistical data analysis and classification procedure, we used the Statistica 7 vs. statistical 

package from StatSoft, Inc. In the statistical procedures we used, the criterion for the 

reliability of the conclusions everywhere was assumed to be a probability level of  

P = 0.95 (95%) (or, equivalently, a confidence level of p = 0.05). 

 

Results 

Patient collective data from the pre-procedure period and data on recurrences 
In Table 1, the data from the pre-procedure period are included among personal indicators, 

history, comorbidities, ultrasound examination, and data on recurrences of AF until the 3rd, 6th 

and 12th month post-procedure.  

 

Amplitude-frequency analysis of the f-waves in the studied groups 
We present the results of the successive processing steps and amplitude-frequency analysis of 

the f-waves in the group without recurrence after CA (25 subjects), and in the group with 

recurrence in the period of 12 months after the procedure (14 subjects), respectively, with one 

typical case from each of the two groups. 

 

 
 

Fig. 4 Example of ECG signal amplitude spectrum before (blue) and  

after (black) application of the T-wave and QRS-complex suppression method 
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Table 1. Patient data from the study subjects 
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1 1 11.4.2018  PVI + CS + MI 54 190 120 33 3 0 0 0 0 0 0 0 47 42 III 0 0 0 

2 1 23.5.2018  PRS 67 190 110 30 1 1 0 0 0 0 2 0 43 54 III 1 1 1 

3 1 11.7.2018  
PVI + MI +  

post + inf 
44 190 124 34 5 1 0 0 0 0 1 modern MI 42 51 III 0 0 0 

4 1 08.8.2018  
PVI + roofline +  

RA 
67 

   
1 1 1 1 0 0 5 0 60 56 III 0 0 0 

5 1 23.10.2018  PRS 67 176 86 28 3 1 1 
 

1 1 5 
ICM; VT;  

ICD 
49 33 III 0 0 0 

6 1 27.9.2018  
PVI + Roofline +  

RPV anterior + inf 
57 176 110 35 11 1 0 0 0 0 1 modern MI 44 65 III 1 n/a n/a 

7 1 10.10.2018  PRS 57 183 97 29 25 1 0 0 0 0 1   40 70 III 0 0 0 

8 1 16.10.2018  PRS 58 170 90 31 2 1 1 0 0 0 2 ASD II type 50 61 III 0 1 1 

9 1 08.3.2019  PRS + CTI 61 176 107 35 2 1 0 0 0 0 1   44 55 IC 0 0 0 

10 1 29.1.2019  PVI + CS 58 186 90 26 1 1 0 0 0 0 1   47 70 IC 1 1 1 

11 2 29.1.2019  PRS 60 160 85 33 8 1 0 0 0 0 2   38 52 III 0 0 0 

12 1 11.2.2019  PRS 48 185 90 26 2 0 0 0 0 0 0   42 59 III 0 n/a 0 

13 1 19.2.2019  
PVI + Roofline +  

mitral isthmus 
66 176 90 29 9 1 1 1 0 0 5   47 68 III 0 0 0 

14 1 26.2.2019  PVI + roofline 66 170 93 32 4 1 0 0 0 0 2   43 67 III 0 0 0 

15 1 26.2.2019  
PVI + mitral isthmus +  

posterior 
58 177 137 44 12 1 1 0 0 0 2   56 62 III 0 1 0 

16 1 11.3.2019  PVI + CS + CFAE 68 178 78 25 1 1 0 0 0 0 2   45 55 III 0 n/a n/a 

17 1 02.4.2019  PRS 72 183 100 30 2 1 0 0 0 1 3   43 63 III 0 0 
 

18 1 09.4.2019  PVI + postinf 54 180 120 37 3 1 0 0 0 0 1   60 54 III 0 0 0 

19 2 23.4.2019  PRS 63 164 97 36 5 1 1 0 0 0 3   40 61 III 1 1 1 

20 2 19.9.2019  PRS 58 163 63 24 2 1 0 0 0 0 2   45 61 III 0 0 0 
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21 1 03.10.2019  PRS 71 173 84 28 1 1 0 1 1 0 4 modern MI 54 54 iC 1 1 1 

22 1 19.10.2019  PVI + CS + CFAE 53 179 71 22 6 0 0 0 0 0 0   45 62 III 1 1 1 

23 1 19.10.2019  PRS 64 
    

1 0 0 1 0 2 AVR / MVR 38 53 III 0 0 
 

24 2 21.10.2019  PRS 70 172 75 25 1 0 0 0 0 0 2   40 50 III 0 0 
 

25 2 29.11.2019  PRS 58 170 80 28 1 1 0 0 0 0 2   40 65 III 1 1 1 

26 1 30.11.2019  PRS 53 180 82 25 1 0 0 1 0 0 2   35 55 III 0 0 1 

27 1 30.11.2019  PRS 65 173 100 33 2 1 0 0 1 1 4   50 38 III 0 1 
 

28 1 02.12.2019  PRS 64 175 112 37 10 1 0 0 0 0 1   48 65 III 0 0 0 

29 2 02.12.2019  PRS 66 171 88 30 15 1 0 0 0 0 3   45 68 III 0 1 1 

30 1 06.12.2019  PRS 51 180 90 28 1 1 0 0 0 0 1   43 50 III 0 0 0 

31 1 07.12.2019  PRS 63 172 70 24 1 1 0 0 0 0 1   40 61 III 0 0 1 

32 1 07.12.2019  PRS 74 170 70 25 2 1 1 0 0 1 4   44 45 III 0 0 0 

33 1 02.1.2020  PRS 52 185 88 26 1 1 0 0 0 0 1   43 65 III 0 1 1 

34 1 20.1.2020  PRS 60 179 90 28 3 1 0 0 0 1 2   42 54 III 0 0 0 

35 2 23.1.2020  PRS 65 163 63 24 2 1 0 0 0 0 3   44 61 III 0 0 0 

36 2 27.1.2020  PRS 72 163 92 34 3 1 0 0 0 0 3   43 52 III 0 0 0 

37 1 12.3.2020  PRS 55 180 90 27 4 0 0 0 0 0 0   40 59 III 0 0 0 

38 1 12.3.2020  PRS 58 176 118 38 3 1 0 0 0 1 1 ACB x3 44 57 III 0 0 0 

39 2 13.3.2020  PRS 64 165 
  

4 1 1 0 0 0 1 Rheumatism 44 60 III 0 0 0 
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а) 

 
b) 
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d) 
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e) 

 
f) 

Fig. 5 Sequential procedures for obtaining the amplitude-frequency spectrum by ECG 

registration for patient No. 14 of the group without AF recurrence postprocedurally:  

the original signal; the signal in the 12 leads with detected QRS-complex (left) and averaged 

QRS-complex in each lead; the signal after extraction of the averaged QRS-T segment;  

the amplitude-frequency spectra of the signal for each lead after extraction; the indicated 

procedures for the lead selected as representative lead V1. 
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d) 
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e) 

 
f) 

Fig. 6 Sequential procedures for obtaining the amplitude-frequency spectrum by ECG 

registration for patient No. 10 of the AF relapse group postprocedurally: the original signal; 

the signal in the 12 leads with detected QRS-complex (left) and averaged QRS-complex  

in each lead; the signal after extraction of the averaged QRS-T segment;  

the amplitude-frequency spectra of the signal for each lead after extraction;  

the indicated procedures for the lead selected as representative lead V2. 
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As a result of the amplitude-frequency analysis of the f-waves in the two groups, we formed 

the following database of their morphological components for each patient: 

 

Table 2. Spectral values – frequency and amplitude for each patient  

in both groups and number of f-waves per minute 
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1 1 4.3 0.0046 258 2 5 0.023 300 

2 3 5.7 0.0048 342 6 6 0.005 360 

3 4 7 0.0043 420 8 3.7 0.0095 222 

4 5 6 0.0063 360 10 5 0.038 300 

5 7 4.3 0.009 258 15 3.6 0.015 216 

6 9 5.2 0.016 312 19 6 0.0083 360 

7 11 5.4 0.0054 320 22 4.5 0.019 270 

8 12 7.7 0.0039 462 21 6.8 0.0035 408 

9 13 4.5 0.0048 270 25 6 0.009 360 

10 14 5 0.0046 300 26 6 0.0035 360 

11 16 5.5 0.0057 330 27 5.9 0.0048 354 

12 17 5.1 0.0045 306 29 4.4 0.0128 264 

13 18 5 0.0077 300 31 5.9 0.058 354 

14 20 5.3 0.0056 319 33 5 0.004 300 

15 23 5.2 0.0046 312 
    

16 24 5.5 0.0065 330 
    

17 28 5.3 0.0027 318 
    

18 30 5.7 0.0048 342 
    

19 32 5.5 0.0028 330 
    

20 34 4.1 0.0047 246 
    

21 35 4.3 0.0069 258 
    

22 36 4.5 0.004 270 
    

23 37 6.7 0.008 402 
    

24 38 5.7 0.003 342 
    

25 39 5.3 0.0034 318 
    

 
The f-W-Ampl-mV values indicated in the table were determined by measuring the 

maximum spectral amplitude in the amplitude-frequency spectrum of each patient. 

 

Tables 3 and 4 show the results of descriptive analysis of morphological f-wave indices for 

the group of patients without recurrence and with recurrence after CA, respectively.  
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Table 3. Descriptive analysis of morphological f-wave indices  

for the group of patients without relapse 

Descriptive Statistics (Ampl(mV); f(Hz)) without recurrence 

  Valid N Mean Minimum Maximum Std.Dev. 

f-W-Hz 25 5.3154 3.6000 7.7000 0.92809 

f-W-Ampl-mV 25 0.0054 0.0013 0.0160 0.00304 

Nmbr-fW-pmin 25 318.9231 216.0000 462.0000 55.68549 

 

Table 4. Descriptive analysis of morphological f-wave indices  

for the group of patients with relapse 

Descriptive Statistics (Ampl(mV); f(Hz)) with recurrence 

 
Valid N Mean Minimum Maximum Std.Dev. 

f-W-Hz 14 5.2000 3.5000 6.8000 1.17047 

f-W-Ampl-mV 14 0.0327 0.0045 0.0950 0.03413 

Nmbr-f-W-pmin 14 310.3333 210.0000 408.0000 70.72482 

 

The histograms of the distribution of the f-wave amplitudes in patients without AF recurrence 

after ablation and patients with AF recurrence are shown in Figs. 7 and 8, respectively.  

The red line indicates the theoretical normal distribution of the statistical estimates for the two 

distributions, respectively, as determined by the Kolmogorov-Smirnov test. 
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Fig. 7 No recurrence – distribution of values close to normal centered  

between 0.002 and 0.008 mV – overall, there were 23 cases out of 25, or 92% of cases,  

in this low-voltage interval 
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Histogram: f-W-Ampl-mV

K-S d=.22577, p> .20; Lilliefors p<.10
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Fig. 8 With recurrence – distribution of values with high asymmetry towards  

the higher values 0.1-0.2 mV – 11 cases of 14, or 79% of cases 

 
For the f-W-Hz frequency metric, there is a certain feature: there is a pronounced clustering of 

values in the relapse group towards higher frequency (Fig. 9). 
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Fig. 9 Distribution of frequency index values in the group without relapse 
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Histogram: f-W-Hz

K-S d=.24275, p> .20; Lilliefors p<.05
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Fig. 10 Distribution of frequency index values in the relapse group 

 
Apparently, the distribution of values for the amplitudes and frequencies of the f-waves in 

patients with relapse differed significantly from normal. Because of this, and because of the 

small and different number of patients in the two study groups, we used the Mann-Whitney 

test to assess the significance of the differences in these parameters between the two groups - 

the results are given in Table 5 (in the table a significant difference with p < 0.05 is marked  

in red).  

 

Table 5. U-test for differences between amplitude and frequency indices  

in the groups without and with AF relapse 

 
 
The result of the test showed a significant difference between the amplitude values in the two 

groups of patients.  

 

Selection of indicators for classification of groups of patients with and without recurrences 

of AF in the postoperative period.  
Our stepwise discriminant analysis identified, out of 14 metrics (columns 1 to 13 in Table 1, 

and the amplitude of the f-waves), 5 that reliably separated the groups without and with 

relapse. 

 

The numerical values obtained for the statistics in Table 6 are Echo LV-EF, f-W-Ampl, HF, 

Stroke/TIA, Diab. The contribution of these indices to the total score was (in the order 

indicated) 27.2%, 3.62%, 2.62%, 14.4%, 12.2%, respectively. 
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Table 6. Summary values of the stepwise discriminant analysis results  

for the determined indicators with reliable classification ability 

Discriminant Function Analysis Summary (Epicrisa + Fa-f)  

Step 5, N of vars in model: 5; Grouping: no-sas (2 grps);  

Wilks’ Lambda: 0.38526 approx. F = 7.0208; p < 0.0005 

 

Wilks’ 

Lambda 

Partial 

Lambda 
F-remove p-level Toler. 

1-Tolerance 

(R2) 

Echo LV-EF 0.722417 0.533296 19.25293 0.000234 0.413442 0.586558 

HF 0.665234 0.579137 15.98757 0.000605 0.454221 0.545779 

f-W-Ampl-mV 0.678300 0.567981 16.73372 0.000483 0.263223 0.736777 

Stroke/TIA 0.562286 0.685170 10.10883 0.004337 0.282336 0.717665 

Diab. 0.535465 0.719489 8.57725 0.007775 0.608372 0.391628 

 

The parameter with the highest contribution to discrimination between the two groups was the 

left ventricular ejection fraction (Echo LV-EF). What is significant in this case, for the 

purposes of our study, is the involvement of the spectral amplitude index of f-waves, with the 

second most important contribution to the discrimination between the two groups of patients, 

whereby we have reason to accept the prognostic significance of f-wave morphology for  

AF recurrence after ablation. The result for the multiple correlation (R2) between the f-wave 

amplitude index and the other indices involved in discrimination is also interesting, with the 

highest correlation for this index. 

 

The two linear discriminators corresponding to the two groups of patients have, respectively, 

coefficients in front of the indices shown in Table 7. 

 

Table 7. Coefficients in front of the determined indices in the two discriminators 

Classification functions; grouping: with-without (Epicrisis + f-Ampl)  

 
G_1:1 G_2:2 

Echo LV-EF 2.2092 2.6402 

HF 64.0511 80.4150 

f-W-Ampl-mV 71.5914 94.8619 

Stroke/TIA -40.8812 -53.4644 

Diab 15.6166 21.1570 

Constant -62.5339 -90.3506 

 

In linear form, the discriminators look like this (with rounding to hundredths): 

 

G_1 = 2.21*Echo LV-EF + 64.05*HF + 71.59*f-W-Ampl-mV – 40.88*Stroke/TIA +  

 + 15.62*Diab – 62.53 

 

G_2 = 2.64*Echo LV-EF + 80.4 2*HF + 94.86*f-W-Ampl-mV – 53.46*Stroke/TIA +  

 + 21.16*Diab – 90.35 
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The assignment of a specific patient to one of the two groups is performed by substituting his 

values for the 5 indicators into the linear discriminators and if the resulting number is greater 

for the 1st discriminator, the patient is assigned to the 1st group (in the case without 

postprocedural AF relapse), if the resulting number is greater for the 2nd discriminator –  

the assignment is to the 2nd group (with postprocedural AF relapse).  

 

To facilitate classification, we used a decision rule based on the difference between the two 

linear discriminators G_1 – G_2, keeping in mind that for a given patient’s data, if G_1 has  

a larger value than G_2, the difference is positive and the patient is assigned to the group 

without relapse; if G_2 has a larger value than G_1, the difference is negative and the patient 

is assigned to the group with relapse. In this case 

 

G_1 – G_2 = –0.43*(Echo LV-EF) – 16.36*HF – 23.27* (f-W-Ampl) +  

 + 12.58*Stroke/TIA – 5.54*Diab + 27.82,  

 

which is the decisive classification rule. 

 

The last column of Тable 8 shows the difference between G_1 and G_2, with positive values 

assigning the patient to the group without relapse and negative values to those with relapse.  

 

A visual representation of the distribution of the values of the decision rule by patient data in 

the group without recurrence and in the group with AF recurrence postprocedurally, is given 

by Figs. 11 and 12, respectively. 
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Fig. 11 Distribution of values for the decision rule – relapse-free group 
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Table 8. Values for the decision rule for each patient in the two groups  

(marked with 1 and 2 in column16, respectively). Misclassified patients are marked in red. 
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1 54 190 120 33 3 0 0 0 0 0 0 47 42 0.0046 1 9.61 

2 67 190 110 30 1 1 0 0 0 0 2 43 54 0.023 2 4.01 

3 44 190 124 34 5 1 0 0 0 0 1 42 51 0.0054 1 5.51 

4 67 
   

1 1 1 1 0 0 5 60 56 0.0043 1 10.62 

5 67 176 86 28 3 1 1 0 1 1 5 49 33 0.0063 1 -8.46 

6 57 176 110 35 11 1 0 0 0 0 1 44 65 0.005 2 -0.31 

7 57 183 97 29 25 1 0 0 0 0 1 40 70 0.009 1 -2.56 

8 58 170 90 31 2 1 1 0 0 0 2 50 61 0.0095 2 -4.24 

9 61 176 107 35 2 1 0 0 0 0 1 44 55 0.016 1 3.74 

10 58 186 90 26 1 1 0 0 0 0 1 47 70 0.038 2 -3.24 

11 60 160 85 33 8 1 0 0 0 0 2 38 52 0.0054 1 5.28 

12 48 185 90 26 2 0 0 0 0 0 0 42 59 0.0039 1 2.30 

13 66 176 90 29 9 1 1 1 0 0 5 47 68 0.0048 1 5.44 

14 66 170 93 32 4 1 0 0 0 0 2 43 67 0.0046 1 1.17 

15 58 177 137 44 12 1 1 0 0 0 2 56 62 0.015 2 -4.79 

16 68 178 78 25 1 1 0 0 0 0 2 45 55 0.0057 1 3.98 

17 72 183 100 30 2 1 0 0 0 1 3 43 63 0.0045 1 0.56 

18 54 180 120 37 3 1 0 0 0 0 1 60 54 0.0077 1 4.36 

19 63 164 97 36 5 1 1 0 0 0 3 40 61 0.0083 2 -4.21 

20 58 163 63 24 2 1 0 0 0 0 2 45 61 0.0054 1 1.40 

21 71 173 84 28 1 1 0 1 1 0 4 54 54 0.0035 2 -0.68 

22 53 179 71 22 6 0 0 0 0 0 0 45 62 0.019 2 -0.65 

23 64 
    

1 0 0 1 0 2 38 53 0.0046 1 -11.50 

24 70 172 75 25 1 0 0 0 0 0 2 40 50 0.0065 1 6.12 

25 58 170 80 28 1 1 0 0 0 0 2 40 65 0.0035 2 -0.28 

26 53 180 82 25 1 0 0 1 0 0 2 35 55 0.95 2 -5.41 

27 65 173 100 33 2 1 0 0 1 1 4 50 38 0.0048 2 -5.04 

28 64 175 112 37 10 1 0 0 0 0 1 48 65 0.0027 1 0.26 

29 66 171 88 30 15 1 0 0 0 0 3 45 68 0.0128 2 -1.79 

30 51 180 90 28 1 1 0 0 0 0 1 43 50 0.0048 1 6.16 

31 63 172 70 24 1 1 0 0 0 0 1 40 61 0.058 2 -0.18 

32 74 170 70 25 2 1 1 0 0 1 4 44 45 0.0028 1 2.82 

33 52 185 88 26 1 1 0 0 0 0 1 43 65 0.004 2 -0.29 

34 60 179 90 28 3 1 0 0 0 1 2 42 54 0.0047 1 4.43 

35 65 163 63 24 2 1 0 0 0 0 3 44 61 0.0069 1 1.37 

36 72 163 92 34 3 1 0 0 0 0 3 43 52 0.004 1 5.31 

37 55 180 90 27 4 0 0 0 0 0 0 40 59 0.008 1 2.20 

38 58 176 118 38 3 1 0 0 0 1 1 44 57 0.003 1 3.18 

39 64 165 
  

4 1 1 0 0 0 1 44 60 0.0034 1 3.66 
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Histogram (Epicrisa+f-w 18v*39c)

Include condition: v15=2

D1-D2 = 14*1*normal(x, -1.7454, 2.795)
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Fig. 12 Distribution of values for the decision rule – relapse group 

 
Hypothesis for possible synthesis of a model for prediction of postprocedural  

AF recurrences after catheter ablation using data from the preprocedural period 
Following the results obtained in the previous sections – a significant difference between the 

spectral amplitudes of f-waves in the two groups of patients – with and without AF recurrence 

after CA, as well as the significant involvement of spectral amplitudes in constellation with 

indicators of comorbidities and ultrasound imaging, we undertook to verify the feasibility of 

developing a model to predict postprocedural AF recurrence after CA. The main aim and 

application of discriminant analysis point towards such a hypothesis: to use the model to 

classify new subjects to one of the study populations (groups).  
 

The decision rule synthesized on the available data classified, among the 39 patients, 

25 without relapse (group 1) and 14 with relapse (group 2), 3 patients erroneously from group 

1 to group 2 (false positive), or 12%, and 1 patient erroneously from group 2 to group 1 (false 

negative), or 7.1%. This result was achieved based on the 5 parameters that reliably separate 

the two groups: Echo LV-EF, f-W-Ampl, HF, Stroke/TIA, Diab. The Sensitivity, Specificity 

and Accuracy of the decision rule were respectively: 

 

Sensitivity = 22/(22 + 1) = 0.96, or 96%; 

 

Specificity = 13/(13 + 3) = 0.813, or 81.3%; 

 

Accuracy = 1 – (4/39) = 0.897, or 89.7%. 

 

Returning to the distributions of the values of the decision rule for the two groups of patients 

studied (Figs. 11 and 12), we can determine a cutoff value to determine the risk of recurrence 

after ablation in the patients studied: 
 

 a value of G_1 – G_2 > 0 implies a low risk of relapse; 

 a value of G_1 – G_2  0 implies a high risk of relapse.  
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These results provide a basis to hypothesize that it is possible to develop an algorithm 

(decision rule) for determining the degree of risk of postprocedural AF recurrence from 

data from the preprocedural period. We will recall the main requirement for realizing this 

possibility: it is correct to apply the DA model (decision rule) to new patients after it has been 

approximated on data of patients not included in the training groups (samples) during rule 

synthesis, and thus to have determined the real sensitivity and specificity of the model,  

i.e. to use the procedure for classification of future items (patients) after the procedure has 

been verified on independent items. 

 

Another condition supporting the applicability of the DA model is to increase the number of 

items in the training samples to a level that leads to higher reliability of discrimination 

statistics. 

 

Under these conditions, the hypothesis for the development of a discriminant model for 

the determination of the risk of recurrence of AF after catheter ablation will lead to a 

practical and convenient for use in clinical settings algorithm for pre-procedural scoring 

(numerical) risk assessment, including by risk levels – low, moderate and high.  

 

Discussion and conclusion 
Despite the significant progress in the success rate of interventional treatment in AF,  

a significant proportion of patients still exhibit arrhythmia recurrence after the procedure. 

The search for possible predictors of procedural success is of utmost importance to improve 

its effectiveness and better patient selection. 

 

In addition to standard clinical indices serving as predictors of AF episodes after ablation [1], 

more attention has been paid in recent years to potential ECG characteristics of fibrillatory 

waves. In our work, ECG parameters alone did not reach a high predictive value for 

recognizing patients at risk of AF recurrence after ablation. Similar results have been reported 

in the past. In a publication, Chang et al. [2] reported that the dominant frequency, as a single 

indicator, was not sufficient to reach a statistically significant predictive value for a 

recurrence-free period after ablation. This changes when more than one ECG parameter is 

added to the calculation.  

 

One of the main practical benefits of the present work is the synthesis of a quantitative 

algorithm, incorporating echocardiographic, clinical, and ECG data, thus arriving at a crucial 

rule allowing the preprocedural assessment of the risk of AF recurrence. By incorporating into 

the algorithm a comprehensive assessment that brings together the echographic index of left 

ventricular ejection fraction, heart failure and two clinical indicators, diabetes mellitus and 

ischemic stroke, as well as the ECG index of f-wave amplitude, it is possible to more fully 

assess the risk of recurrence in a given patient.  

 

In our study, we assumed that the combination of instrumental and clinical parameters would 

provide a high predictive value, and in the follow-up, we reported the parameters providing 

the highest predictive value. The parameter with the highest contribution to discrimination 

between the two groups (those with relapse and those without relapse) was left ventricular 

ejection fraction (Echo LV-EF). To date, there is no definitive literature evidence for a 

specific threshold of Echo LV-EF, below which the probability of AF recurrence after CA 

increases, but the association between reduced ejection fraction and poor prognosis is known 

and demonstrated in a number of publications and meta-analyses [1, 10]. Despite the high 
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contribution in the scoring system, differences in EF values alone do not indicate a 

sufficiently high predictive ability.   

 

What is significant in this case, for the purposes of our study, is the involvement of the 

spectral amplitude index of the f-waves, with a second more important contribution to the 

discrimination between the two groups of patients, whereby we have reason to accept the 

prognostic significance of f-wave morphology for AF recurrence after ablation. Several 

publications have reported the importance of f-wave amplitude as a predictor of arrhythmia 

duration, or as a predictor of intraprocedural arrhythmia termination in patients with persistent 

AF, as well as of sinus rhythm maintenance at 12-month follow-up [15, 23].  

 

To increase sensitivity, some authors have proposed algorithms for automatic amplitude 

readout and the use of more than one lead [23]. Particularly interesting is the result for the 

multiple correlation between the spectral amplitude index of f-waves and the other indices 

involved in discrimination, with the highest correlation for this index. To date, the literature 

lacks an algorithm for determining the risk of AF recurrence that incorporates the predictive 

ability of the spectral amplitude of f-waves combined with clinical indicators, and this is one 

of the main practical benefits. A similar approach of combined analysis of ECG parameters 

coupled with clinical indicators has been reported by Matsuo et al. [11], but in that work the 

AF cycle measured manually on a surface ECG was reported, combined with intracardiac 

parameters from the left atrial and right atrial auricles, and the f-wave amplitude was not 

investigated. Another significant difference of our work, compared to the previous 

publication, is that the approach is entirely noninvasive, allowing the calculation of the 

probability of recurrence before ablation is performed. 
 

Concomitant diabetes mellitus has been described as a risk factor for the development of AF 

[21], but data on ischaemic stroke are scarce. It is likely that the presence of AF is an 

indicator of a long-standing arrhythmia in which optimal medical control has not been 

applied, and ischemic stroke (IS) itself is a manifestation of this. The CRYSTAL-AF study 

described detection of AF in 30% of patients with AMI or transient ischaemic attack by the 

third year of the event, perhaps confirming that atrial fibrillation accompanies some patients 

long before its diagnosis [17]. 

 

Another important practical relevance, is that the added ECG recording and analysis, as well 

as the proposed hypothesis for determining the risk of postprocedural AF recurrences (after its 

verification), are fully compatible with the algorithm of work in most clinics, do not prolong 

the patient’s stay and do not bring additional risk to his health. 

 

A major limitation of any quantitative system for the prediction of AF recurrence is the 

complex pathogenesis of this arrhythmia, involving triggers with high-frequency activity and 

a pathological substrate in the atria, capable of sustaining the arrhythmia, and ablation would 

be differentially effective for different mechanisms of the arrhythmia. Another possible 

limitation could be the multiple variable parameters during a complex and complicated 

procedure, such as AF ablation, such as lesion continuity around the pulmonary veins and/or 

linear lesions in the atrium. This in turn can lead to a difficult to prognosticate long-term 

outcome of the procedure and makes the creation of a high-fidelity risk score very difficult. 

It is these variables that are a possible cause of the 4 misreported cases in our paper. 
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