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Abstract: Cluster analysis is a principal approach to discover unknown tumor subtypes. 

Innovative and effective cluster analysis methods are of great significance for tumor diagnosis 

and malignant tumor treatment. Existing studies on the cluster analysis of tumor gene data 

generally have defects in aspects such as unsatisfactory performance in clustering high-

dimensional and high-noise data, and insufficient accuracy in selecting cluster centers.  

To overcome these defects, this paper performed cluster analysis on tumor gene data based 

on an improved Density peaks clustering (DPC) algorithm. At first, this paper elaborated on 

the composition and storage format of tumor tissue samples used in the experiment, gave the 

tumor gene expression profile data in the matrix format, and introduced the preprocessing 

process of gene expression profile data. Then, this paper carried out feature selection of tumor 

gene expression profile data. At last, this paper innovatively divided the target gene density 

into two parts of K-nearest neighbor local density and neighborhood density, thereby 

completing the improvement of conventional DPC algorithm and expanding its application 

scenarios. Combining with experiment, the clustering results of the algorithm before and after 

introducing the idea of Approximate Nearest Neighbor (ANN) were given, which had verified 

the effectiveness of the algorithm proposed in this paper. 

 

Keywords: Cluster analysis, Tumor genes, DPC algorithm, Feature selection, Gene density. 

 

Introduction 
When the chromosomal DNAs inside human body cells are damaged under the action of various 

carcinogenic factors and undergo gene mutations, local tissue cells would proliferate 

abnormally and form tumors [1, 10, 13, 15, 25]. Tumors have many subtypes; as a 

heterogeneous disease, there are also many expression patterns of tumor genes [7, 11, 12, 26]. 

Therefore, in terms of tumor gene data, the traditional research methods based on single gene 

usually have great limitations [3, 5, 9, 16, 23, 27, 31]. Gene chip technology can simultaneously 

process large-scale biological information, making it possible to compare and analyze gene 

expression data under both normal and diseased states [2, 4, 14, 17-21, 28, 30]. At current stage, 

cluster analysis is a principal approach to discover unknown tumor subtypes. Innovative and 

effective cluster analysis methods are of great significance for tumor diagnosis and malignant 

tumor treatment. 

 

As early as in the 1980s, the subtypes of tumors have been validated theoretically and 

practically, but the classification is relatively simple. Qaddoum [22] introduced an advanced 

method for classifying tumor types through microarray gene selection records, using shuffling-

based gene selection and optimized data clustering. Qaddoum developed a new hybrid 

algorithm that combines the artificial bee colony algorithm with genetic algorithm, and took it 

as the clustering tool of key gene selection. Bladder cancer is a common urinary system tumor 
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with a higher incidence in men between 60 and 70 years old. Sarafidis et al. [24] employed 

bioinformatics analysis and regression method to find common gene expression profiles related 

to tumor subtypes and differentiation, their method was proved to be helpful for determining 

noel gene targets, which can be used as targets for prognosis, diagnosis, and treatment. High-

dimensional data such as the data of gene expression profiles generally have high homogeneity 

and high noise, and there’s a large amount of redundant information in the data in the same 

database. Dai et al. [6] proposed a new non-negative matrix factorization algorithm called the 

sparse orthogonal non-negative matrix factorization; they applied it to identify differentially 

expressed genes and cluster tumor samples, added L1 norm regularization and orthogonal 

constraints to the traditional Non-Negative Matrix Factorization (NMF) model to obtain a more 

powerful data analysis tool. Existing studies have proposed different algorithms for tumor 

clustering, but few of them made use of the knowledge of experts to improve the performance 

of tumor discovery. Yu et al. [29] took expert knowledge as a constraint in the clustering 

process, and proposed a semi-supervised clustering ensemble framework based on feature 

selection, and applied it to tumor clustering of biomolecular data. In order to evaluate the 

robustness of using sparse manifold clustering and embedding to classify gene expression 

profiles, García-Gómez et al. [8] adopted Sparse Manifold Clustering and Embedding (SMCE) 

algorithm to reduce the dimensionality of preprocessing dataset, and used both supervised and 

unsupervised methods to obtain the classification model: the former method was based on linear 

discrimination analysis, and the latter performed clustering based on SMCE embedded data. 

 

After reviewing and summarizing above references, it is found that world field scholars have 

achieved certain research results in terms of the cluster analysis of tumor gene data, but there 

are still shortcomings. Some algorithms have poor performance in clustering high-dimensional 

and high-noise data, the correction rate of cluster center selection is unsatisfactory, which has 

resulted in insufficient accuracy of clustering results, and even failed to produce biologically 

meaningful explanations. In view of these defects, this study performed cluster analysis on 

tumor gene data based on an improved Density peaks clustering (DPC) algorithm, and the main 

content of this paper contains these aspects: 1) introduce in detail the composition and storage 

format of tumor tissue samples used in the research; 2) give the tumor gene expression profile 

data in the matrix form, and explained the preprocessing process of gene expression profile 

data; 3) complete the feature selection of tumor gene expression profile data; 4) divide the target 

gene density into two parts: the K-nearest neighbor local density and neighborhood density, and 

complete the improvement of the traditional DPC algorithm, give a detailed description of the 

execution steps of the proposed improved DPC algorithm, and use experimental results to verify 

the effectiveness of the proposed algorithm. 

 

The research conducted in this paper designed an effective cluster algorithm for gene expression 

profile data, in the hopes of providing valuable reference opinions for molecular therapy, 

targeted drug recommendation, and cancer prediction. 

 

Dataset structure and preprocessing method 
Tumor is a multi-gene, multi-factor disease; the tumor gene expression profile data has the 

characteristics of containing lots of noise data and redundant data, and the data are often of high 

dimensions. This paper selected two classic tumor gene expression profile datasets for research: 

the acute leukemia dataset, and the digestive system tumor dataset. 

 

Tissue samples studied in this paper included: 48 acute lymphocytic leukemia ALL, 22 acute 

myeloid leukemia AML, 18 chronic lymphocytic leukemia CLL, and 26 chronic myelogenous 
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leukemia CML. A gene expression matrix was built based on 1827 gene expression data.  

Table 1 gives the storage format of some gene expression data. 

 

Table 1. Storage format of acute leukemia gene expression data 

Probe number 1 2 3 4 5 6 7 8 9 

Description Control sequence 

ALL1 -163.7 35.6 -33.2 176.2 117.7 15 18.5 -52.7 23.5 

ALL2 -236 -105 -32 62 158 -34 165 -7 -35 

AML1 -287 93 -32 145 -2 22 286 -115 93 

AML2 -21 116 -12 27 182 31 304 -72 -28 

CLL1 -265 129 82 338 145 248 207 -313 0 

CML1 -374 11 23 156 85 118 339 -7 75 

 

According to the difference of epigenetic genes, gastric cancer is divided into proliferative type 

PRO, metabolic type MET, and interstitial type INT.  

 

The dataset used in this research came from the gastric cancer tumor expression profile dataset 

of the GEO database of the National Center for Biotechnology Information of the United States, 

it contains expression profiles of 21 samples, and expression data of 475 genes. The storage 

format of some gene expression data is given in Table 2. 

 

Table 2. Storage format of gastric cancer gene expression data 

Probe number 1 2 3 4 5 6 7 

Gene name SEMA3C GML MKNK1 OGG1 FAM193A SH3BP2 C4orf10 

GSM51763 49.2 3 75.6 11.5 205.3 31.6 86.4 

GSM51764 203.4 31.2 33.6 137.4 215.7 23.5. 64.7 

GSM51765 82.6 1.8 157.4 9.6 286.4 13.7 72.5 

GSM51766 68.3 1.4 164.8 8.5 218.3 11.4 73.5 

GSM51767 39.7 12.3 101.9 14.5 241.2 7.8 79 

GSM51768 44.6 4.5 236.5 12.4 354.7 28.9 136.8 

Probe number 8 9 10 11 12 13  

ID EN TIFIER GABRA3 OMD IFI44L VRK1 VRK2 C4orf10  

GSM51763 23.8 7.8 37.6 19.6 31.7 10  

GSM51764 44.8 9.5 73.6 32.4 67.9 8.6  

GSM51765 15.8 3.6 202.2 22.7 42.5 12.2  

GSM51766 27.8 16.4 31.7 25.9 19.3 11.8  

GSM51767 45.3 73 35.5 26.6 34.2 7.6  

GSM51768 87 43.5 138.5 54.3 105.9 17.9  

 

The preprocessing of gene expression profile data is the key to subsequent cluster analysis of 

tumor gene data, and it can be performed in three steps: data cleaning, data filling, and data 

normalization. 

 

Fig. 1 gives the matrix form of gene expression profile data. Data cleaning is to delete 

meaningless data elements in the matrix. In a complete gene sample, if the total number of 

missing features i is lower than threshold ψ, then the feature will be deleted before subsequent 

cluster analysis, usually the value of ψ takes 3. 

 



 INT. J. BIOAUTOMATION, 2022, 26(2), 175-192 doi: 10.7546/ijba.2022.26.2.000872 
 

178 

A1,1 A1,j   

Gene

Sample

A2,j   

Ai,j 

AN,j   

Ai,1

AN,1   

A2,1

 
Fig. 1 The matrix form of gene expression profile data 

 

Directly deleting the missing items in the matrix may result in loss of valuable features.  

As the primary preprocessing method of tumor gene expression data, data filling needs to adopt 

a certain filling strategy to give more complete gene expression profile datasets. This paper 

chose to use the K-nearest neighbor filling method to fill in the missing values, that is, select 

K neighbor genes that are closest to the missing item in the gene expression profile data, 

calculate the corresponding K distances, determine the weight values of the K neighbor genes 

based on the distance, and fill in the missing items based on the weighting method.  

Suppose: δi represents the Euclidean distance between the missing items in the gene expression 

profile data and the i-th neighbor gene; ωi represents the weight of the i-th neighbor gene, then 

Eq. (1) gives the expression of weight value: 
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The filling values of missing items in gene expression profile data can be obtained  

from Eq. (2): 
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By normalizing the gene expression profile dataset, the value range of all data in the dataset 

could be adjusted to the [0, 1] interval, in this way, the gene expression profile data of different 

dimensions become comparable. Suppose: aij represents the original gene expression value; 

A represents the gene expression value after normalization; amin and amax respectively represent 

the minimum and maximum values of gene expression in the sample, then Eq. (3) gives the 

calculation formula: 

 

min

max min

ija a
A

a a





  (3) 

 

In order to further eliminate the influence of different data caused by mutations, this paper 

normalized the standard deviation of the gene expression profile dataset. The normalization is 

based on the original gene expression value A, the mean value A  and standard deviation ε were 

normalized, and Eq. (4) gives the calculation formula: 
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   (4) 

 

After subjected to the standard deviation normalization, the gene expression profile dataset 

obeys the standard normal distribution, namely the normal distribution with 0 as the mean and 

1 as the standard deviation. 

 

Feature selection of tumor gene expression profile data 
To reduce the deviation of results brought by the cluster analysis of tumor gene data, it is 

necessary to solve the “curse of dimensionality” caused by the characteristics of tumor gene 

expression profile data. The number of decisive genes with significant tumor-causing 

characteristics in the sample genes is less than the feature dimension of the sample gene 

expression profile dataset. In order to effectively improve the accuracy of tumor gene data 

clustering, it needs to screen out a key feature subset from the sample gene expression profile 

dataset for modeling and completing data feature selection.  

 

Suppose: Ai represents the quantitative value of the expression amount of gene i in a normal 

sample after subjected to normal normalization transformation, it obeys the normal distribution 

with a mean of ni and a variance of mi
2, and ni = 0, mi

2 = 1, namely Ai ~ M(0, 1). Suppose:  

Bi represents the value of pure tumor gene i after subjected to the same normal normalization 

transformation, then Bi = Ai + ξi, wherein ξi represents the difference in the quantitative values 

of the expression amount of gene i in pure tumor samples and in normal non-diseased samples. 

If ξi also obeys normal distribution and satisfies ξi ~ M(oi, wi
2), then Bi also obeys normal 

distribution and satisfies Bi ~ M(oi + 0, wi
2 + 1). The difference in the quantitative values of 

gene expression amount can be represented by Ai – Bi, and the gene feature selection problem 

can be transformed into a hypothesis test problem of F0: vi = 0. 

 

In fact, in the cluster analysis of tumor gene data, the adopted gene expression profile data are 

usually the combinations of tumor samples and normal samples. Suppose: Bi
* represents the 

quantitative value of gene expression amount, γAC represents the tumor purity of tumor sample 

AY, then the quantitative value of gene expression amount of real samples could be determined 

based on the idea of linearity hypothesis: 
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 (5) 

 

According to the Eq. (5), Bi
* also obeys normal distribution and satisfies  

 

Bi
* ~ M(γACoi,1 + γ2

ACw2
i) 

 

γAC can be taken as a covariate and added into DESeq2, the statistical tool for differential gene 

screening, to carry out test and analysis on the differentially expressed genes.  

 

Compared with other gene difference analysis methods such as the method of variance analysis, 

the fold change analysis method is simpler, which only needs to compare the gene data analysis 

results of experimental group and control group based on fluorescence intensity. The gene 

expression profile data of tumor gene data cluster analysis is composed of two parts: the amount 

of tumor gene expression, and the amount of normal gene expression. Suppose: aCG represents 

the amount of tumor gene expression, aNG represents the amount of normal gene expression, 
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the mean(∙) function is a function used to calculate the average value, η_D represents the ratio 

of the mean of aCG to the mean of aNG, then, the calculation formula of fold change analysis is 

given by Eq. (6): 

 

 

 
_

CG

NG

mean a
D

mean a
   (6) 

 

The value of η_D usually satisfies |log2η_D|  > 1. Although this method is simple and intuitive, 

it does not fully consider the statistical significance of gene difference quantification. 

Furthermore, this paper adopted T-test to measure the differential expression of genes from a 

statistical point of view. Suppose: VA2
CG and VA2

NG respectively represent the variance of tumor 

gene samples and the variance of normal gene samples, M1 and M2 respectively represent the 

number of tumor gene samples and the number of normal gene samples, and they obey the  

t distribution with a degree of freedom of M1 + M2 – 2, then the calculation formula of  

T statistics could be expressed as Eq. (7): 
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The improved DPC clustering algorithm  

for tumor gene expression profile data 
The tumor gene expression profile data including tumor gene expression and normal gene 

expression has the characteristics of uneven density distribution and intertwined, the traditional 

DPC density peak clustering algorithm is not applicable for these characteristics, so the 

clustering performance is poor. For this reason, this paper aimed to improve the traditional  

DPC algorithm, it divided the target gene density into two parts: K-nearest neighbor local 

density, and neighborhood density, and the neighborhood density was obtained by calculating 

the ratio of the local density of gene expression profile data to its K-nearest neighbor local 

density and distance. 

 

For a given gene expression profile dataset A = {a1, a2, ..., am}, suppose aj represents the  

K-nearest neighbors of the target gene ai, δij represents the Euclidean distance between target 

genes ai and aj, then, the local density σi1 of ai can be calculated by Eq. (8): 
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Suppose: σi2 represents the neighborhood density ratio of each target gene ai, then its value can 

be calculated by Eq. (9): 
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Eq. (10) gives the calculation formula of the real density of target gene ai: 

 

21 iii    (10) 
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By superimposing the K-nearest neighbor local density and neighborhood density, and 

calculating the ratio of the local density of target gene to its neighborhood density, it can 

effectively avoid the situation that the sum of K-nearest neighbors in the tumor gene expression 

profile data might is the same, thereby truthfully reflecting the density of each target gene in 

the tumor gene expression profile dataset. 

 

For a given gene expression profile dataset A = {a1, a2, ..., am}, suppose INi represents the 

inverse nearest neighbor set of target gene ai, KNi represents the set of K-nearest neighbors, 

then the inverse nearest neighbor of ai can be defined by Eq. (11): 

 

 ji KNiAjIN  ,  (11) 

 

According to above formula, the influence on target genes in the tumor gene expression profile 

dataset can be described by the inverse nearest neighbor set of each original target gene.  

When a target gene is located in a high-density region, it is usually surrounded by many other 

genes. When a target gene is located in a low-density region, it means that the target gene has 

few neighbor genes.  

 

The influence space YK(i) of target gene ai can be defined by Eq. (12): 

 

  ii INKNiYK   (12) 

 

The influence space YK can describe the two-way neighborhood relationship between target 

genes. The tightness between two target genes described by the one-way K-nearest neighbor is 

less than the tightness between two target genes within the influence space, that is, the accuracy 

of similarity between the two target genes in the influence space is higher. 

 

The number of shared K-nearest neighbors of any two target genes ai and aj can be calculated 

by Eq. (13): 

 

jiij KNKNSKN   (13) 

 

For the similarity between target genes ai and aj in a given gene expression profile dataset  

A = {a1, a2, ..., am}, and whether there is a shared K-nearest neighbor between the two and its 

influence space, this paper classified target genes ai and aj and gave the definition of their 

similarity in different situations. 

 

1) In case that target genes ai and aj have influence space and shared K-nearest neighbors at the 

same time, their similarity can be calculated by Eq. (14): 
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2) In case that target genes ai and aj do not have shared K-nearest neighbors but have influence 

space, their similarity can be calculated by Eq. (15): 

 

 
 ji

ji

ij
,max

,min
rTGS ij







2

 (15) 



 INT. J. BIOAUTOMATION, 2022, 26(2), 175-192 doi: 10.7546/ijba.2022.26.2.000872 
 

182 

 

3) In case that target genes ai and aj have shared K-nearest neighbors but do not have influence 

space, and aj is the K-nearest neighbor of ai, their similarity can be calculated by Eq. (16): 
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4) In case that target genes ai and aj have shared K-nearest neighbors but do not have influence 

space, and aj is not the K-nearest neighbor of ai, their similarity can be calculated by Eq. (17): 
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5) In case that target genes ai and aj do not have influence space or shared K-nearest neighbors, 

but aj is the K-nearest neighbor of ai, their similarity can be calculated by Eq. (18): 

 

 
 ji

ji

ij
,max
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rTGS ij








 (18) 

 

6) In case that target genes ai and aj do not have influence space or shared K-nearest neighbors, 

and aj is not the K-nearest neighbor of ai, their similarity can be calculated by Eq. (19): 

 

0ijTGS  (19) 

 

For target gene xiai, its similarity KL-nearest neighbor set is the KL target genes with the greatest 

similarity with xiai, at the same time, the KL-nearest neighbor set was replaced: 

 

 ii INTGSIN   (20) 

 

Besides making the targe gene data easy to fall in higher local density, the DPC algorithm’s 

target gene allocation strategy also needs to be improved. Fig. 2 shows the similarity of density 

distribution between target genes.  

 

 

Fig. 2 A diagram of density distribution similarity between target genes 
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In order to effectively improve the grade of membership between samples and the accuracy of 

allocation results, this paper had fully considered both the distance similarity and density 

distribution similarity at the same time, and optimized the cluster expansion and allocation 

strategy of the algorithm. 

 

For each un-allocated gene ai, aj is a similar neighbor of ai, and aj has been allocated already, 

then the label of the class that aj has been allocated to can be described by bj = d (d = 1, 2, ..., n), 

and there are Bij = qij/(Σk∈RES LMMiqij), qij = 1/(1 + δij). Suppose: Φij represents the normalized 

value of similarity, |σi – σj| represents the density difference, and then Eq. (21) gives the 

calculation formula of the grade of membership OW: 

 

  




 
















iINTGSj

db ji

ijij
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i

i

qΦOW
1

1

  (21) 

 

According to above formula, OW is affected by two influencing factors: the TGS[IN(i)] of targe 

genes, and the density difference between two target genes, that is, its size is jointly determined 

by Φij and density difference. Greater Φij value means that the distance between two target 

genes is closer; a smaller density difference means that the distribution similarity of two target 

genes is higher. The former case conforms to the situation that closer clusters are of higher 

similarity, and the latter case conforms to the situation that clusters of similar data distribution 

are of higher similarity. The smaller the Φij and density difference values, the smaller the 

influence of allocated target gene aj on the grade of membership of un-allocated gene ai, and 

the greater the probability of two genes belonging to a same cluster. 

 

Through the above method, the un-allocated gene ai can be allocated to the cluster with the 

largest OW, thereby realizing effective improvement of the allocation strategy of the  

DPC algorithm. 

 

Based on the clustering expansion process of tumor gene data, it can be known that, two gene 

clusters with intersection may merge into one cluster under the influence of intersection. 

Therefore, before allocating the rest target genes, it is necessary to complete the labeling of 

low-cohesion points, suppose α represents the cohesion of target gene aj, then Eq. (22) gives its 

definition: 
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The mean of the sum of cohesion values of all genes is defined as the standard value of cohesion, 

which is represented by γ, then there is: 

 





M

j

l

j
M 1
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  (23) 

 

Gene datasets below the standard value of cohesion are defined as low-cohesion sets, then  

there is: 

 

   l

jCOH  (24) 
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The specific steps of the DPC algorithm are (Fig. 3). 

 

Start

Input dataset and determine the 

number of class clusters

Data preprocessing and 

normalization

Calculate the δ and σ values of each 

target gene in the given gene dataset 

A

Plot the decision diagram of the 

center points of gene clusters and 

update the set of cluster centers

Label un-allocated target genes with 

a α value that is less than γ

Classify target genes based on the 

idea of K-nearest neighbor expansion

End

Have the algorithm 

termination conditions 

been met?

Output clustering 

results

Y

N

Allocate target genes based 

on the idea of learning 

probability

Allocate low-cohesion target 

genes that have not been 

allocated yet

 
Fig. 3 Execution flow of the improved DPC algorithm 

 

Step 1: Perform preprocessing on gene expression profile data adopted for the cluster analysis 

of tumor gene data, such as data cleaning, data filling, and data normalization.  

 

Step 2: According to the definition of the real density of target gene ai, calculate the Euclidean 

distance δ between each target gene in the given gene dataset A and other genes, and the local 

density σ. 

 

Step 3: Plot the decision diagram of the center points of gene clusters based on the δ and σ 

values of each target gene, the center points of gene clusters are points with greater decision 

values, then, the selected cluster center points are added into the set of cluster centers.  

 

Step 4: Calculate TGS[IN(i)]. 

 

Step 5: Label each un-allocated target gene j in the updated cluster center set as “allocated”, 

and add the TGS[IN(i)] of cluster to which j is allocated into the initialized sequence DL. 

 

Step 6: Calculate α (the cohesion value of each gene) and γ (the standard value of the cohesion 

of all genes), and label the un-allocated target genes with an α value smaller than γ. 

 

Step 7: Classify target genes based on the idea of K-nearest neighbor expansion: 

1) Select the first target gene i in sequence DL, allocate target gene i satisfying the 

similarity value conditions to the cluster it belongs, and add it to the tail of sequence DL. 

The similarity value conditions are: satisfies TGSio > mean(TGSol), un-allocated, and has 

high cohesion TGS[KN], wherein o  TGS[KN]i and l  TGS[KN]o. 

 

2) If sequence DL is not empty, go to Step 7-1. 
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Step 8: Allocate target genes based on the idea of learning probability: 

1) Build an m×n dimensional matrix TGM with the m un-allocated target genes in Step 7, 

calculate and store the grade of membership d

mOW  of each un-allocated target gene; then 

screen elements in each row of matrix TGM, pick the gene corresponding to the maximum 

value of the grade of membership max( d

mOW ) and add it to gene list LO, and then add the 

cluster category argmax( d

mOW ) of the gene to list LMO. 

 

2) If there are still un-allocated target genes, then search and allocate argmax( d

iOW ).  

If there’s no un-allocated target gene, then go to Step 8-3. 

 

3) Update matrix TGM and lists LO and LMO, and update the grade of membership of 

each target gene w in TGS[KN] according to the formula below: 

 
















1

1

wi

iwiw

d

w

d

w qΦOWOW


 (25) 

 

Update max( d

mOW ) and argmax( d

mOW ) corresponding to list LO and list LMO, and go to 

Step 8-2. 

 

Step 9: If there are still some low-cohesion target genes that have not been allocated yet, then 

allocate them to the nearest cluster according to the principle of proximity. 

 

 

Experimental results and analysis 
This paper selected two clustering performance evaluation indexes, the Adjusted Rand Index 

(ARI) and the F-1 value, to analyze the clustering results of tumor gene data. The greater the 

ARI and F-1 value, the closer the experimental results are to the real situation. Tableс 3 and 4, 

respectively give the ARI and F-1 value of the clustering results of tumor gene data. For the 

proposed algorithm, during the clustering process of 10 listed gene samples, the values  

of K-nearest neighbor local density and neighborhood density had an impact on the grade  

of membership, thereby affecting the clustering performance of the algorithm.  

 

Table 3. ARI values 

Algorithm 
Traditional  

DPC 

Introduce the idea  

of similar neighbors 

The proposed  

algorithm 

Serial 

number  

of the 

sample 

1 0.712 0.832 0.765 

2 0.765 0.886 0.883 

3 0.785 0.984 1.000 

4 0.831 0.735 0.846 

5 0.865 0.923 0.962 

6 0.867 0.823 0.876 

7 0.524 0.514 0.621 

8 0.368 0.495 0.532 

9 -0.023 0.386 0.758 

10 0.542 0.647 0.658 
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According to the above two tables, in most gene samples, the proposed algorithm had greater 

ARI and F-1 values, therefore, in terms of the overall performance, the proposed algorithm is 

better than the other two algorithms. 

 

Table 4. F-1 values 

Algorithm 
Traditional  

DPC 

Introduce the idea  

of similar neighbors 

The proposed  

algorithm 

Serial 

number 

of the 

sample 

1 0.752 0.826 0.863 

2 0.831 0.958 0.968 

3 0.765 0.984 1.000 

4 0.946 0.872 0.954 

5 0.971 0.945 0.972 

6 0.993 0.954 0.996 

7 0.845 0.821 0.962 

8 0.516 0.838 0.839 

9 0.457 0.685 0.876 

10 0.924 0.910 0.945 

 

Fig. 4 compares the similarity of different algorithms. In terms of the proposed algorithm, 

according to different situations of whether there’re shared K-nearest neighbors and influence 

space or not, different similarity values could be obtained. Through the algorithm comparison 

experiment of three cases with the greatest possibility, it can be seen that, for different 

experiment samples, their optimal similarity values were different, the greater the similarity, 

the greater the grade of membership of the gene, and the greater the influence on the cluster 

centers that distinguish a same class and other genes. Therefore, the model proposed in this 

paper has certain reference value for the cluster analysis of real tumor gene data. 

 

For the proposed algorithm, a decision diagram of the center points of gene clusters was plotted 

based on Euclidean distance δ and local density σ of target genes and other genes, target genes 

with greater δ and σ values were selected as the cluster centers. Fig. 5 shows the distribution of 

target genes in a two-dimensional space arranged in the order of decreasing local density.  

 

 
Fig. 4 Comparison of similarity of different algorithms 
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Fig. 5 Distribution of target genes in two-dimensional space 

 

Fig. 6 shows the decision diagram of the proposed algorithm plotted based on the δ and σ values 

of target genes in Fig. 5. From Fig. 6, it can be clearly seen that target genes 15 and 7 have very 

large δ and σ values; these two target genes are density peak points and can be taken as the 

center points of gene clusters. Based on the decision diagram shown as Fig. 6, the center points 

of gene clusters can be selected manually, or the first K target genes with the greatest δ×σ values 

can be selected as the center points of gene clusters. 

 

 

Fig. 6 Decision diagram of the center points of gene clusters 

 

Fig. 7 visualizes the clustering results of the proposed algorithm before and after introducing 

the idea of similar nearest neighbor. Figs. 7a, 7c, and 7e are clustering results before introducing 

the idea of similar nearest neighbor under the condition of different tumor gene datasets; and 

Figs. 7b, 7d, and 7f are corresponding clustering results after introducing the idea of similar 

nearest neighbor. 
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a)                                                               b) 

 
c)                                                                d) 

 

 
e)                                                                f) 

 

Fig. 7 Visualized clustering results of the algorithm before  

and after introducing the idea of similar nearest neighbor 

 

According to Fig. 7, before and after introducing the idea of similar nearest neighbor,  

the clustering results of the proposed algorithm are basically reasonable on different datasets, 

but there’re differences in classification accuracy. Before introducing the idea of similar nearest 

neighbor, the algorithm showed error clustering. However, on non-two-dimensional datasets, 

by comparing the clustering results of Figs. 7e and 7f, we can see that the proposed algorithm 

performed well before and after introducing the idea of similar nearest neighbor; before 

introducing the idea of similar nearest neighbor, the accuracy of the algorithm showed an 

obvious decline in areas with high similarity of density distribution. For crossed and repeated 

parts, they can be processed according to the clustering process of the proposed algorithm. 

Taken together, the clustering accuracy of the proposed algorithm was relatively ideal on three 
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different types of tumor gene datasets, especially, the clustering performance was satisfactory 

on high-dimensional datasets. 

 

According to above analysis, this paper adopted common artificial dataset and actual dataset 

for theoretical verification of the algorithm, while verifying the feasibility and effectiveness of 

the algorithm, this paper also applied it to actual problems to solve the difficulty of the density 

peak clustering algorithm in accurately selecting cluster centers in gene expression profile data, 

thereby proving the practical value of the proposed algorithm. 

 

Conclusion 
This paper performed cluster analysis on tumor gene data based on an improved DPC algorithm. 

First, the paper introduced the composition and storage form of tumor tissue samples in detail, 

and elaborated on the preprocessing process of gene expression profile data. Then, it carried 

out feature selection of tumor gene expression profile data. At last, it divided the target gene 

density into two parts: K-nearest neighbor local density, and neighborhood density. The paper 

fully considered the distance similarity and the density distribution similarity at the same time, 

and completed the improvement of the traditional DPC algorithm. In the experiment, we chose 

ARI and F-1 value as indexes to evaluate the clustering results of tumor gene data, and the 

experimental results proved that the proposed algorithm could outperform other algorithms in 

terms of overall performance. After that, this paper compared the similarity of different 

algorithms, and demonstrated that the proposed model has certain reference value in the cluster 

analysis of real tumor gene data. Moreover, a decision diagram of the center points of gene 

clusters was plotted, and clustering results of the algorithm before and after introducing the idea 

of similar nearest neighbor were visualized in the paper, which had verified that the accuracy 

of the proposed algorithm was relatively ideal, especially, its clustering performance was 

satisfactory on high-dimensional datasets. 
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