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Abstract: Although the existing protein recognition methods have improved the recognition 

accuracy of key proteins to a certain extent, they have ignored the biological features of the 

proteins. In view of this shortcoming, this paper constructed a high-order dynamic complex 

protein network for key protein recognition. At first, this paper presented a method for feature 

selection and candidate set evaluation of complex protein network; a weighted network was 

constructed based on the obtained topological features of the complex protein network and the 

semantic similarity of protein gene ontology annotations. Then, this paper proposed an 

algorithm for recognizing key proteins in high-order dynamic protein network based on a Fruit 

fly optimization algorithm. At last, the effectiveness of the proposed model was verified by 

experimental results. 

 

Keywords: Complex protein network, Dynamic network, Key protein recognition, Fruit fly 

optimization algorithm (FOA). 

 

Introduction 
With the implementation and promotion of the human genome project, the sequencing of human 

genome has been completed, which is taken as a symbol of the arrival of the post genome era 

[1, 5, 6, 9, 10, 15, 23]. Although the genome sequencing project has finished already, still, we 

haven’t fully figured out the internal mechanism of genome sequence [3, 4, 11, 13, 17]. Proteins 

are the products of gene expression; the study of proteomics enables us to probe deep into the 

internal relations of functional genomes [2, 22]. Every life activity needs to be completed by 

the cooperation of multiple kinds of proteins. According to the function of proteins in life 

activities, they can be divided into key proteins and non-key proteins [14, 16, 19].  

The recognition of key proteins not only helps us understand the law of cell activities, but also 

provides a solid theoretical basis for the research on disease pathogenesis and the development 

of corresponding medicines. 

 

Aiming at the problem of low recognition degree of essential proteins based on topological 

parameters, Huang et al. [8] analyzed the correlations between the essentiality of proteins and 

their main topological parameters, and discussed the nature of the essentiality-judgment ability 

of parameters; then they made use of such correlations among parameters to obtain the mutual 

information of essential nodes contained in these parameters and put forward the construction 

method of parameter combinations. Protein fold recognition is one of the important steps in 

protein structure prediction. Yan et al. [20] combined two main computational approaches: the 

template-based method based on the alignment scores between query-template protein pairs, 

and the machine learning method based on feature representation and machine learning 

classifier, they integrated the advantages and disadvantages of the two methods, and proposed 

more accurate predictors for protein fold recognition. The tertiary structure of proteins is 

mailto:200800553@hhvc.edu.cn


 INT. J. BIOAUTOMATION, 2022, 26(2), 193-208 doi: 10.7546/ijba.2022.26.2.000873 
 

194 

determined by the amino acid sequence in the process of protein folding, and it plays an 

important role in protein functions. Protein fold recognition is one of the hotspots in the study 

of bioinformatics. Hekmatnia et al. [7] proposed a feature selection method based on Map 

Reduce framework and Vortex Search Algorithm, and experimental results proved that their 

method had greatly improved the prediction accuracy. Lei and Zhang [12] proposed a logistic 

regression algorithm for identifying candidate disease genes based on reliable protein-protein 

interaction network, and achieved good recognition effect. Existing methods mostly recognize 

protein functional complexes from the protein-protein interaction networks at a good level, the 

applicability of advanced graph network methods has not yet been fully studied. Zaki et al. [21] 

proposed various graph convolutional network methods to improve the detection of protein 

complexes, they developed a neural overlapping community detection model to cluster the 

nodes using a complex affiliation matrix, and they found that the performance of the algorithm 

was significantly better than the previous advanced methods. Khattak et al. [18] applied the 

protein-protein interaction network to the analysis and exploration of genes related to oral 

cancer diseases; the proposed technology is fully interactive and can more accurately and 

effectively analyze the data of oral cancer diseases. 

 

Although existing protein recognition methods have improved the recognition accuracy of key 

proteins to a certain extent, they generally have ignored the biological features of proteins, and 

the real proteins are constantly changing in the cell cycle. In order to make up for the 

shortcomings of existing methods in key protein recognition, this paper constructed a high-

order dynamic complex protein network for key protein recognition. The content of this paper 

mainly contains the following several aspects: 1) the proposal of a method for feature selection 

and candidate set evaluation of the complex protein network; 2) the construction of a weighted 

network based on the obtained topological features of the complex protein network and the 

semantic similarity of protein gene ontology annotations; 3) effectively recognizing key 

proteins in the high-order dynamic protein network based on Fruit fly optimization algorithm 

(FOA); 4) verifying the effectiveness of the constructed model using experimental results.  

 

Network feature selection and candidate set evaluation 
A gene ontology annotation is a description of the function of a specific gene. Each annotation 

is composed of a gene and the descriptive vocabularies of the corresponding function, which 

can facilitate the various studies of researchers. Fig. 1 shows the structure of a gene ontology 

annotation. As can be seen from the figure, the semantic concept of function description that is 

closer to the root node contains less information, while the semantic concept of function 

description that is farther away from the root node contains more information.  

 

Cosine similarity was adopted to calculate the similarity of two gene ontology annotation 

vectors in the target protein annotation text. Fig. 2 gives a diagram of cosine similarity. 

 

Suppose: the gene ontology annotation vector n is represented by [u1, v1]; vector m is 

represented by [u2, v2], then, based on the cosine value of angle ω between n and m, the cosine 

similarity could be calculated: 
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Suppose, in a m-dimensional space, X is represented by [X1, X2, …, Xm], Y is represented by  

[Y1, Y2, …, Ym], then the cosine similarity can be calculated by Eq. (2): 
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Fig. 1 Structure of a gene ontology annotation 

 

 

Fig. 2 A diagram of cosine similarity 

 

 

Based on cosine similarity, the complex protein network model could be constructed.  

For example, count the word frequency of annotation text of the protein pairs to obtain 

corresponding high-frequency word sets, that is, to construct the complex protein network 

model based on the similarity of high-frequency words. 

 

Suppose: B represents the set of protein nodes, R represents the set of node connection edges, 

then the constructed complex protein network can be defined as H = {B, R}. The unweighted 

complex protein network can be described by the adjacent matrix X = {xij}, and the information 

about the connectivity between key protein nodes i and j is stored by the matrix element xij. 

If nodes i and j are connected, xij is equal to 1; otherwise, if nodes i and j are not connected, 

xij is equal to 0. For the constructed complex protein network based on annotation text, this 

paper listed a few parameters to characterize its topological structure: 

 

If the access between two protein nodes can be completed through the shortest path, it can be 

judged that the two nodes are related, and the relevance between the two nodes can be described 
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by an intermediary value. Suppose: among the shortest paths between protein nodes a and b, 

the number of paths passing through node i is represented by mabi, and the total number of 

shortest paths connecting a and b is represented by mab, then Eq. (3) gives the calculation 

equation of the intermediate value: 

 


a b ab

abi
i

m

m

M
Y

2

1   (3) 

 

Suppose: degree l represents the number of edges connected to a protein node, it satisfies  

li = ∑jxij. The analysis of protein annotation text requires degree-related features, such as the 

average node degree defined as Eq. (4) and the standard deviation of neighbor node defined  

as Eq. (5): 

 

  
j

jij

i

m

i lx
l

l
1

  (4) 

 

 

2
1

2

11

























  

j n

nin

i

jij

i

m

i lx
l

lx
l

l   (5) 

 

Suppose: r represents the total number of protein node edges, then, the symbiosis between 

protein nodes, namely the analysis of protein node types can be measured by Pearson 

correlation coefficient shown in Eq. (6): 
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In the gene ontology annotation neighborhood network of annotation text of the target protein, 

how gene ontology annotations with different frequencies appearing as neighbor nodes needs 

to be quantified using the Pearson correlation coefficient. 

 

The local node density of protein node neighborhood can be described by the clustering 

coefficient, and the number of triangles between three surrounding nodes close to the target 

protein node can be used for equivalent calculation: 
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After obtaining the eigenvalues of topological structure of the complex protein network, the 

evaluation of vocabulary patterns in the candidate set can be completed based on the 

eigenvalues of gene ontology annotations of the corresponding protein annotation text. Based 

on the judgement principle of whether the evaluation score is the highest or not, this paper 

performed recognition on the most important gene ontology annotation in a certain vocabulary 

pattern, that is, most important gene ontology annotation has the strongest ability to express this 

vocabulary pattern. Suppose: LM (ti) represents the evaluation score of vocabulary pattern 
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before introducing the gene ontology annotation importance judgment, MA(Qi) represents the 

largest evaluation score of gene ontology annotations. By introducing the evaluation score of 

gene ontology annotation of target protein annotation text into the evaluation of vocabulary 

pattern, we can get a new evaluation equation as follows: 

 

     QMAtLMtML ii *   (8) 

 

The new scores of protein pairs can be obtained by combining the original scores of each protein 

pair with the eigenvalues of the complex network. Suppose: PJ(e) represents the average 

topological attribute value of the complex protein network, LM(e) represents the original score 

of a target protein pair, then the calculation equation of the new score LM*(e) is: 

 

     * *LM e LM e PJ e   (9) 

 

The above evaluation method can realize the protein interaction recognition algorithm, thereby 

better evaluating the proteins in the candidate set and making the proteins added to the candidate 

set more reliable. 

 

Construction of the Complex Protein Network 

Topological and biological feature extraction 
This section elaborates on the construction process of the complex protein network.  

First, the topological features of the network used for evaluating the tightness of protein-protein 

interactions were calculated, including the clustering coefficients of protein nodes and edges.  

 

The clustering coefficient of protein nodes can be defined as the degree of nodes and the number 

of edges connecting other nodes, to a certain extent, it can represent the tightness of connection 

between a certain protein node and other adjacent protein nodes. Here, it is defined that the 

degree of protein a is represented by la, which means that there are la edges connecting with 

other protein nodes through a, the set of its neighborhood protein nodes is represented by M(a). 

At this time, the number of effective interaction edges of the sub-network constituted of a and 

M(a) can be represented by RM(a), then Eq. (10) gives the calculation equation of the clustering 

coefficient GEa of a: 
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Here, it is defined that the edge between proteins a and b is represented by (a, b), the number 

of protein nodes jointly connected by a and b is represented by Cab, and the degrees of a and b 

are respectively represented by la and lb, then Eq. (11) gives the calculation equation of the 

clustering coefficient W(a, b) of edges: 
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If a and b are not connected, namely there is no interaction between a and b, then GW(a, b) is 

equal to 0. 
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The possibility that a protein belongs to a similar protein complex can be evaluated based on 

the similarity of protein gene ontology annotation information. The similarity between gene 

products based on gene ontology annotation is regarded as the semantic similarity between gene 

ontology annotations. The maximum information volume of the most informative common 

ancestor node of the protein nodes, namely the lowest common ancestor, was equivalent to the 

semantic similarity between gene ontology annotations. Suppose: tne(a, b) represents the 

number of occurrences of the lowest common ancestor of nodes a and b in the annotation text 

database, then Eq. (12) gives the calculation equation of information volume AX: 

 

    batlogpeAX ne ,,    (12) 

 

Suppose: δLC represents the gene ontology annotation of the lowest common ancestor of gene 

ontology annotation information δi and δj, then the semantic similarity between gene ontology 

annotations can be described by Eq. (13): 

 

    LCji AXmaxsim  ,   (13) 

 

Construction of the weighted network 
When only the topological features are used to weight the complex protein network, the low 

quality of network data and the lack of protein complexes will affect the reliability of the 

evaluation of protein interactions. This paper constructed the weighted network based on the 

obtained topological features of the complex protein network and the semantic similarity of 

protein gene ontology annotations. 

 

W(a, b) was re-defined based on the Jaccard similarity coefficient: 
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The value range of JCD(a, b) is [0, 1]. Combining with the Jaccard similarity coefficient,  

the improved edge clustering coefficient in H = {B, R} can be defined as GW, thereby obtaining 

the calculation result GW(a, b) of the similarity of topological structure of the complex protein 

network. Suppose: M(a) and M(b) represent the sets of other surrounding proteins that connect 

to the edges of protein node a and b, then there is: 
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Where, the numerator is the number of neighbor protein nodes commonly owned by a and b, 

and the denominator is the total number of neighbor protein nodes connected with a and b. 

After the similarity of topological structure of the complex network has been defined as GW, 

the relationships between a protein node and other nodes in its neighborhood are no longer 

equal, and this node will be more inclined to neighbor nodes that are closely connected with it.  

In order to effectively reduce the impact of the same protein annotation text on the calculation 

results of the similarity of gene ontology annotations and improve calculation accuracy, this 

paper defines semantic similarity as the proportion of semantic information volume of gene 

ontology annotations in the annotation text set with the largest volume of corresponding 

semantic information in the complex network. Suppose: proteins a and b are respectively 
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annotated by gene ontology annotation sets X1 and Y1; E1 and E2 respectively represent the 

annotation text sets of the semantic information of a and b; E1 and E2 contain the annotation 

text set AXmax(E) with the largest semantic information volume; t(δi) represents the number of 

occurrences of a gene ontology annotation δi in the specified annotation database;  

AX(δ) represents the semantic information volume of δi, then, the semantic similarity SS(a, b) 

between a and b is defined by Eq. (16): 
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The specific construction process of the weighted network based on obtained topological 

structure features of the complex protein network and the semantic similarity of protein gene 

ontology annotations is as follows: at first, the topological structure similarity of the network 

and the semantic similarity of gene ontology annotations were summed and bisected, and the 

calculation equation of the similarity S(a, b) of protein nodes a and b corresponding to any 

connecting edge in the complex network is given by Eq. (17): 
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The value range of S(a, b) in above equation is [0, 1]. In the obtained weighted protein network, 

the weight value of the interaction edge of proteins can represent the similarity between the 

two, namely the tightness between them. 

 

Recognition of key proteins in high-order dynamic protein network 

Model construction 
In order to improve the accuracy and efficiency of key protein recognition in the complex 

protein network, this paper fully considered the time series of the constructed protein network, 

and used FOA to conduct effective recognition of key proteins in the high-order dynamic 

protein network. 

 

Firstly, the protein’s active period was introduced into the constructed complex protein network 

to generate a high-order dynamic protein network model. Fig. 3 gives a diagram of the 

constructed high-order dynamic protein network. 

 

This paper characterized the threshold of gene information volume according to the  

3-σ principle. If a protein in the network is active, its corresponding gene information volume 

value is greater than the preset standard threshold of the 3-σ principle. On the contrary, it is less 

than that. 
 

Suppose: λ(a) and ε(a) represent the mean and variance of gene information volume of protein 

a within time period [1, ψ], then Eq. (18) gives the calculation equation of threshold FZ(a): 
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Due to the periodicity of gene information data generation, the gene information volume value 

at a certain time is defined as the mean of gene information volume in three cycles.  

Suppose: ψ(i) represents the gene information volume at time moment t, then there is: 
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Fig. 3 Diagram of the constructed high-order dynamic protein network 

 
At a fixed time, if an interacting protein pair is active, then the connecting edge of the proteins 

is also active. The entire protein network can be divided into several subnetworks based on the 

active state of the proteins, here the number of subnetworks takes 10.  

 

For the constructed weighted high-order dynamic protein network, in order to obtain effective 

topological and biological information of the network and get a new centrality strategy,  

the centrality score CH(a) of protein a can be calculated using the equation below: 
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Since there is a certain probability for each protein to generate 10 dynamic protein subnetworks, 

when calculating CH(a), the frequency of proteins appearing in the subnetworks should be fully 

considered. Suppose: CHi(b) represents the centrality score of protein a at time moment i,  

CS(b) represents the number of occurrences of protein a in the dynamic protein subnetworks, 

then, there is: 
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According to above equation, if protein a does not appear in subnetworks at time moment i, 

then CHi(b) is equal to 0. 



 INT. J. BIOAUTOMATION, 2022, 26(2), 193-208 doi: 10.7546/ijba.2022.26.2.000873 
 

201 

Key protein recognition 
For different swarm intelligence algorithms, the performance varies greatly. FOA has the merits 

of powerful global searching ability, small computation load, and low complexity. The fruit fly 

swarm has the swarm intelligence of fast searching, that is, visual search enables the fruit flies 

to quickly locate the optimal location, and then the location information is spread to the entire 

swarm, therefore, FOA is very good at searching for global optimal. The olfactory searching 

mechanism shows that fruit fly individuals have a certain ability to jump out of local optimal 

locations, then combining with visual searching, the fruit fly swarm can migrate locations 

gradually and update the information of current optimal location. 

 

This paper effectively recognized key proteins in the high-order dynamic protein network based 

on FOA and associated the process of fruit fly searching for the optimum with the process of 

key protein recognition. Fig. 4 shows the flow of the key protein recognition algorithm. The key 

protein candidate set and the sequence number of candidate proteins were associated with each 

fruit fly individual and its corresponding location. 
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Fig. 4 Flow of the key protein recognition algorithm 

 

Suppose: WZXD(aj) represents the average score of the dynamic local connectivity of the j-th 

protein in q key protein candidate sets, WCH(aj) represents the corresponding dynamic network 

topology centrality score, in order to comprehensively evaluate the topological features of the 

constructed weighted high-order dynamic protein network, this paper combined WZXD 

(the parameter describing the modularity degree of the network) with WCH (the parameter 

describing the centrality of the new high-order dynamic protein network), and Eq. (22) gives 
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the equation for calculating the odor concentration judgment value OC(i) of fruit fly at a certain 

location during the execution of the algorithm: 
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The accurate calculation of the topological and biological features of the network is the basis 

of key protein recognition, and the calculation of subcellular localization data is particularly 

important. The possibility of an individual fruit fly representing a key protein can be measured 

by the odor concentration judgment function: 
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Suppose: DWD(aj) represents the subcellular localization score of the j-th protein in q key 

protein candidate sets, weight value η is used to adjust the importance degree of topological and 

biological features of the network to the key protein recognition results, and its value range is 

[0, 1]. If η = 1, then the key protein recognition results are only determined by the topological 

features of the network; if η = 1, then the key protein recognition results are only determined 

by the subcellular localization information in the biological features of the network. 

 

Experimental results and analysis 
It is known that, in the proposed key protein recognition algorithm, weight value η can realize 

the adjustment of the proportion of the importance of the topological and biological information 

of the network to the key protein recognition results. This paper analyzed the influence of the 

constant changing weight value η on the key protein recognition results, and the analysis results 

are shown in Table 1. According to the table, when the value range of weight value η is  

[0.5, 1], there’s little difference in protein recognition results, after comprehensive 

consideration, its value was set to 0.5 in this paper.  

 

Table 1. Influence of weight value η on recognition results 

      TOP 

η 
1% 5% 10% 15% 20% 25% 

0 36 180 350 445 562 610 

0.1 46 186 341 452 543 629 

0.2 43 182 341 446 536 625 

0.3 41 185 316 430 533 625 

0.4 41 184 305 422 532 620 

0.5 41 186 298 417 530 620 

0.6 41 180 289 416 536 620 

0.7 38 180 290 410 532 618 

0.8 41 178 298 412 532 619 

0.9 40 178 289 400 530 617 

1 40 179 287 416 555 618 

 

Table 2 shows the experimental results under different similarity thresholds of gene ontology 

annotations. Proteins with an odor concentration judgment value greater than threshold W in a 

round of iteration were taken as recognized proteins with strong interaction effect and were 

added into the seed set to perform the next round of iteration. According to the table, the 

experimental results of this method were good. The accuracy reached the highest 71.99% when 



 INT. J. BIOAUTOMATION, 2022, 26(2), 193-208 doi: 10.7546/ijba.2022.26.2.000873 
 

203 

the similarity threshold of gene ontology annotations and threshold W were both 0.6. The recall 

rate reached the highest 72.42% when the similarity threshold of gene ontology annotations 

was 0.5 and the threshold W was 0.4. The F-score value reached the highest 70.88% when the 

similarity threshold of gene ontology annotations was 0.6 and the threshold W was 0.5. 

According to these results, when the similarity threshold of gene ontology annotations was set 

to 0.6, the protein network recognition results were better. 

 

Table 2. Experimental results under different similarity values 

of gene ontology annotations 

Threshold W 0.3 0.4 

Threshold of similarity 0.4 0.5 0.6 0.4 0.5 0.6 

Accuracy 65.12 64.45 66.57 66.46 67.32 68.23 

Recall rate 69.03 70.21 68.33 68.25 69.12 67.80 

F-score 67.21 68.01 67.12 67.21 68.13 67.91 

Threshold W 0.5 0.6 

Threshold of similarity 0.4 0.5 0.6 0.4 0.5 0.6 

Accuracy 68.31 69.23 69.71 69.41 69.98 71.99 

Recall rate 72.42 65.66 64.74 63.25 63.32 64.25 

F-score 66.78 67.50 67.23 66.41 70.88 66.51 

 

Table 3 shows the results of different iteration numbers when the similarity threshold of gene 

ontology annotations was set to 0.6, which further verified that the proposed method had 

achieved good protein recognition effect.  

 

Table 3. Experimental results under different iteration numbers 

Threshold W 0.3 0.4 

Number of iterations 1 2 3 1 2 3 

Accuracy 66.23 65.45 65.66 68.77 67.31 67.26 

Recall rate 69.30 70.13 70.35 67.35 69.12 69.11 

F-score 67.78 67.88 67.89 67.99 68.26 69.86 

Threshold W 0.5 0.6 

Number of iterations  1 2 3 1 2 3 

Accuracy  71.23 69.21 69.45 70.21 69.93 69.87 

Recall rate 65.03 65.63 65.71 63.73 72.54 64.38 

F-score 67.05 67.45 67.78 66.75 66.88 66.98 

 

The highest accuracy 71.23% appeared in the first round of iteration when the W value was 0.5. 

The highest recall rate 72.54% appeared in the second round of iteration when the W value was 

0.6. The highest F-score value 69.86% appeared in the third round of iteration when the W value 

was 0.4.  

 

In Fig. 5, images a), b), c) respectively correspond to the experimental results of accuracy, recall 

rate, and F-score value of different recognition models, showing the comparison of the 

experimental results of the third iteration of the traditional weakly-supervised recognition 

model and the recognition model proposed in this paper. As can be seen, compared with the 

traditional recognition model, the protein recognition accuracy and F-score value of the 

proposed model had been improved significantly, while the recall rate showed a decline, 

wherein, the F-score value reached the highest in the third round of iteration when the W value 

was 0.4, which was 2.38% higher than the traditional weakly-supervised recognition model. 
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b) 

 
c) 

Fig. 5 Comparison of experimental results of different recognition models 
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In order to further evaluate the proposed key protein recognition model, this paper plotted 

accuracy-recall curves to compare the proposed model with other models in terms of degree 

centrality, subgraph centrality, and local neighbor connectivity. As shown in Fig. 6, curve 1 

represents the proposed model, curves 2, 3, and 4, respectively, correspond to recognition 

models based on local neighbor connectivity, subgraph centrality, and degree centrality. 

Obviously, the proposed model obtained the best effect, which had proved that the FOA 

proposed in this paper had a good effect in the recognition of key proteins in the high-order 

dynamic protein network. 

 

 
Fig. 6 Comparison of accuracy-recall curves of different recognition models 

 

In order to further verify the recognition performance of the proposed key protein recognition 

model, this paper employed the jackknife method to compare the proposed model with other 

three models. In the jackknife method, a model with a bigger area under the curve has better 

recognition performance. As shown in Fig. 7, the area under the curve of the proposed model 

is the largest, which is much bigger than the other three models, and this can further verify the 

effectiveness of the proposed model in key protein recognition. 

 

 
 

Fig. 7 Comparison of jackknife curves of different recognition models 
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Conclusion 
This paper performed key protein recognition based on high-order dynamic complex protein 

network. At first, the paper elaborated on the method of feature selection of complex protein 

network and candidate set evaluation, and constructed a weighted protein network based on the 

obtained topological features of the complex protein network and the semantic similarity of 

protein gene ontology annotations. Then, the protein’s active period was introduced into the 

constructed complex protein network to generate a high-order dynamic protein network model, 

and the proposed FOA completed effective recognition of key proteins in the high-order 

dynamic protein network. Combining with experiments, the experimental results obtained 

under conditions of different gene ontology annotation similarity and different iteration times 

were given, and the experimental results of accuracy, recall rate, and F-score of different 

recognition models were analyzed. At last, this paper plotted the accuracy-recall curves and 

jackknife curves of different recognition models, and the effectiveness of the proposed model 

had been verified. 
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