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Abstract: Background: The ability to design efficient enzymes for a broad class of different 

reactions would be of tremendous practical interest in both science and industry.  

Computer-assisted designing is a novel approach to generating industrial enzymes for 

biotechnological applications.   

Objectives: The main aim of this study was to design an enzyme construct with diverse 

substrate-binding specificity based on the evolutionary conservation of archaeal vanadium-

dependent phosphatases. 

Materials and methods: A rational 3D structural model of enzyme construct was developed 

from conserved sequence scratch encompassing a vanadium-binding site and functional 

domain. Substrate-binding specificity of the designed enzyme was computed with different 

myo-inositol polyphosphate analogous by a molecular docking program.  

Results: A designed enzyme has shown more substrate-binding specificity with  

1D-myo-inositol 3, 4, 5, 6-tetrakisphosphate. Its catalytic function closely resembled  

myo-inositol polyphosphate-5-phosphatase and multiple inositol polyphosphate 

phosphatases. Moreover, the enzyme construct was energetically stable with a low degree of 

conformational changes upon substrate-binding.   

Conclusion: Substrate specificity and catalytic competence of designed enzymes were 

computationally evaluated for further biotechnological applications. 

 

Keywords: Molecular docking, Phosphatase, Archaea, Phytase, Molecular evolution, 

Enzyme design. 

 
Introduction 
Computer-assisted enzyme designing has become a subject of major interest and activity in 

recent years [6, 48]. Several strategies have been employed to design artificial enzymes  

[1, 44]. Molecular dynamics simulation provides a means to sample configuration phase 

space, thereby generating an ensemble of structures from which thermodynamic averages may 

be accumulated [4, 27, 29, 47]. Molecular dynamics simulation of proteins has been 

instrumental in demonstrating that proteins flux and undergo complex internal motions, which 

in some cases are directly related to function [32]. It is widely used for the generation of 

ensembles necessary to calculate protein-ligand relative binding free energy [2, 40],  

salvation-free energy [22], and activation free energy for enzyme-catalyzed reactions [5, 11, 

12, 51]. It is also used to describe a connection between the internal dynamics of enzymes and 
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their mechanism of catalysis [15, 37, 42]. A protein motion is vital to many enzymes as it 

helps in binding on substrates and releasing products. However, it is not yet known whether a 

protein movement accelerates chemical steps in biotransformation processes.  

 

A site-directed mutagenesis is a prominent tool used for enzyme designing and engineering. 

A point mutation can affect the catalytic rate of many enzymes that have been suggested as an 

effective measure for enzyme designing [18, 49]. It was used to design a histidine-bearing 

catalyst for the hydrolysis of p-nitrophenyl acetate into p-nitrophenol [3]. Triosephosphate 

isomerase from ribose binding protein scaffold [33] and de novo O2-dependent phenol oxidase 

from four-helix bundle fold [25] have been designed and developed earlier. An in silico 

benchmark for computational enzyme design has been developed from the recapitulation of 

locations and structures of native enzyme active sites in a set of naturally occurring enzymatic 

scaffolds [52]. Besides, the molecular evolution-directed approach is a great concern for 

designing metalloenzymes of archaebacteria due to the conservation of the metal-binding 

domain determining the catalytic functions of many archaeal enzymes [24]. A similar 

approach has been previously applied to design some archaeal metalloenzyme constructs such 

as β-methylaspartate mutase [7], formyltetrahydrofolate ligase [8], urease [10], 

sirohydrocholine cobalt chelatase, and coenzyme F420 non-reducing hydrogenase [9].   

 

Phosphatase is an enzyme that removes a phosphate group from its substrate. It hydrolyzes 

phosphoric acid monoesters into a phosphate ion and a molecule with a free hydroxyl group 

[14]. The catalytic activity of this enzyme depends on the concentration of vanadium ions in 

archaea [16]. Vanadium-dependent phosphatases can co-ordinate two catalytically essential 

metal ions within their active sites. A hydroxyl ion bridging two metal ions takes part in the 

nucleophilic attack on phosphorus ions [16]. The phosphatidic acid phosphatase (PAP2) is a 

superfamily of phosphatases and haloperoxidases, which may act as a membrane-associated 

phosphatidic acid phosphatase in eukaryotes. The PAP2 domain is highly conserved within 

eukaryotes with >70-80% amino acid homology in mammals and plant origins [28, 41]. 

However, the metal-ligating site is low conserved between plant and mammal PAPs [17]. 

The sequence-structure-function relationships of many metallophosphatases are evolutionarily 

related to the metal-binding site of vanadium-dependent phosphatases [50]. Therefore,  

a vanadium-binding site in the phosphatases has gained attention to design an enzyme 

construct with diverse substrate specificity.  

 

The common structural features can determine the thermostability of engineered Escherichia 

coli phytase [20, 21, 36, 46]. The site-directed mutagenesis has been used to develop a 

multiple inositol polyphosphate phosphatase (MuIPPP) from the active site of phytase for 

utilization of a substrate analogue, scyllo-InsP6 (scyllo-1D-myo-inositol hexakisphosphate) 

[13, 38]. It suggests the possibility of designing similar catalysts from small molecular 

mimics of the enzyme active site. Therefore, the present work was aimed to design an enzyme 

construct with diverse substrate-binding specificity from archaeal vanadium-dependent 

phosphatases based on evolutionary conservation of sequences at the active site in the 

vanadium-binding region. 

 

Materials and methods 

Evolutionary conservation analysis  
Amino acid sequences of archaeal phosphatase were retrieved from the GenPept of the 

National Centre for Biotechnology Information (NCBI). Conserved domains architecture in 

the retrieved sequences was searched by using the NCBI-conserved domain search tool [34]. 

Metal-binding sites were identified from similar sites present in crystallographic structures 
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available in the Protein Data Bank (PDB). The selected sequences were aligned and manually 

inspected for multiple substitutions using the ClustalX 2.0 software [45]. Aligned sequences 

were iterated at each alignment step and a low-scoring sequence was deleted manually. 

The phylogenetic tree was constructed with 1000 bootstraps values using MEGA 6.0 software 

[43] using the Neighbor-joining algorithm.  

 

Molecular modeling and construct designing  
ModWeb is an automatic comparative protein modeling server used to build the model [19]. 

It was used to generate homology models of selected protein sequences based on the 

structural templates. All side-chains of the resulted models were optimized by ModPipe that 

consisting of a set of non-redundant chains extracted from crystallographic structures. 

Functional residues in the protein sequences were predicted with the ProFunc server [30]. 

The likely biochemical functions of protein models were identified from crystallographic 

structures whose catalytic domains are similar to the functional regions. Amino acid residues 

in a metal-binding site that is not covered in the active site and substrate-binding site were 

omitted from the atomic coordinates of a protein model. Amino acid residues corresponding 

to selected atomic coordinates were further used to build a homology model by using the 

Prime program in the Maestro software package (Schrödinger Inc.). The structural quality and 

accuracy of the final homology model of each enzyme construct were evaluated with 

Structural Analysis and Verification Server (SAVS), http://nihserver.mbi.ucla.edu/SAVES/. 

Amino acid residues that are deviated were identified by structural superimposition using the 

DaliLite Pairwise Alignment Tool, http://ekhidna.biocenter.helsinki.fi/dali_lite/start. 

 

Molecular dynamics simulation of enzyme constructs 
A standard dynamic simulation cascade module in the Discovery Studio software (Accelys, 

Inc) was used to obtain structural conformers of the enzyme constructs. The CHARMM force 

field and steepest descent as well as an adopted basis Newton-Raphson algorithms were used 

for molecular dynamic simulations. A distance constraint was assigned between N-terminal to 

the C-terminal of each model. A dihedral restraint was started from C to Cα (Ф) of first amino 

acid residue and Cα to N (ψ) of second amino acid residue until the last amino acid residue in 

a molecular dynamic ensemble. After molecular dynamic simulations, 30 structural 

conformers were generated and the top 5 lower energy conformers were selected for further 

molecular docking studies. 

 

Molecular docking studies  
The structures of MIP (1D-myo-Inositol 1-phosphate)-derived substrates were retrieved from 

the KEGG database using the SIMCOM software (www.genome.jp/tools/simcomp). 

All structures were obtained in mol2 files and then converted to the pdb format. The genetic 

algorithm and AMBER force field were selected to perform docking simulation of each 

substrate into enzyme construct using Autodock software 4.2 [35]. A construct was fixed as 

rigid while the substrate was set as flexible in the docking process. The Ligand Fit program 

was used to predict the binding pocket of the enzyme construct. An energy grid was selected 

around the binding cavity of the construct. After obtaining good docked models, minimization 

was performed with a smart energy minimization algorithm to refine the orientation of the 

substrate in the binding site of the enzyme construct.  

 

http://nihserver.mbi.ucla.edu/SAVES/
http://ekhidna.biocenter.helsinki.fi/dali_lite/start
http://www.genome.jp/tools/simcomp
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Results and discussion 

Analysis of molecular conservation of PAP2 
We conducted a simple text mining approach for the identification of metal-dependent 

archaeal phosphatases entries in the GenPept of NCBI. It indicates that there are several 

sequence entries found for metal-dependent archaeal phosphatases, but no crystallographic 

structures are available for them (Table 1). We identified the conserved domain of all entries 

and then constructed a phylogenetic tree as shown in Fig. 1. It shows that the archaeal PAPs 

domains selected for the designed enzyme construct are related to the PAPs domains of  

Danio rerio and Homo sapiens. It has also shown a domain similarity to phospholipid 

phosphatases of eukaryotes with a significant bootstrapping value of 993.  

 

Table 1. List of archaeal vanadium-dependent phosphatases  

selected for designing enzyme constructs 

Construct Molecular function Organism Length  Accession 

1 Membrane-associated 

phosphatase  

Thermococcus onnurineus 

NA1 

216 YP_002307194 

2 Phospholipid phosphatase Cenarchaeum symbiosum 

A 

208 YP_876319 

3 Phospholipid phosphatase  Methanopyrus kandleri  

AV19 

201 NP_614474 

4 Dolicholpyrophosphatase Sulfolobus acidocaldarius 

DSM 639 

206 P80143 

5 Undecaprenyl-diphosphatase  Metallosphaera sedula 

DSM 5348 

203 YP_001190526 

6 PAP2 family phosphatase Thermococcus 

kodakarensis KOD1 

213 YP_183101 

7 Glucose-6-phosphatase Haloarcula marismortui 

ATCC 43049 

186 YP_137675 

8 Type II phosphatidic acid 

phosphatase  

Pyrococcus furiosus DSM 

3638 

191 NP_577769 

 

 

Fig. 1 Phylogenetic inference of designed enzyme  

based on the PAPs domain sequences  

of distantly related organisms 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=118576576
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=20094627
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=73920968
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=146303210
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=57640623
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=55379825
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=18976412
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Sequence similarity analysis demonstrates that archaeal phosphatases show a 33-42% 

sequence identity to the template structures in which Thermococcus onnurineus NA1 

phosphatase has shown the shortest metal-binding site encompassing functional site (Table 2).  

 

Table 2. Homology modeling for predicting  

the 3D structure of archaeal vanadium-dependent phosphatases 

Construct 
Structural 

template 

Sequence 

identity, (%) 

Modeled 

position 

Modeling 

score 
MPQS Z-Dope 

1 1D2T 42 121-183 0.19 0.30 2.32 

2 2IPB 41 125-189 0.16 0.37 1.50 

3 2IPB 40 32-81 0.03 0.33 2.35 

4 1QI9 41 100-192 0.31 0.29 1.69 

5 1D2T 40 121-178 0.22 0.58 1.13 

6 2E77 49 170-208 0.05 0.22 2.82 

7 1D2T 33 26-161 0.26 0.77 1.16 

8 2IPB 33 119-185 0.24 0.55 0.79 

 

As shown in Fig. 2, the enzyme construct comprises a metal-binding domain at the positions 

of 90-180 amino acids. Conserved domain similarity analysis shows that it has a functional 

domain similar to the PAP2_like superfamily (CD03391). Ala123, Asp124, and Tyr125 are 

active sites identified similar to those found in crystallographic structure (PDB ID: 1D2T) 

with a conservation score of 5.578 (Table 3). A model showing low structural quality and 

functional sites are located beyond the selected metal-binding domain that has been neglected 

in this study. 

 

 

Fig. 2 Functional features of a designed enzyme identified by multiple sequence alignment  

of closely related domains sequences (shaded regions are showing the highly variable  

amino acids and bolded regions are functional amino acids) 

 

Structural quality and accuracy of the enzyme construct 
We selected acid phosphatase (PDB ID: 1D2T: A; 1.90A) as a suitable structural template for 

modeling the 3D structure of a construct from its sequence. The structural quality and 

accuracy of the modeled enzyme construct were assessed by several programs (Fig. 3). 

We predicted the molecular energy and root mean square deviation (RMSD) of modeled 

structure is -2369.21 KJ/mol and 0.4, respectively. The ERRAT program computed its 

structural quality with 80% accuracy. The PROVE program calculated its structural accuracy 

as Z-score RMS 1.454. Verify3d program also proved that 16.85% of the residues show an 

averaged 3D-1D score greater than 0.2. Ramachandran plot represents 7.9% allowed and 

2.6% generally allowed regions found in modeled enzyme construct. We found a good 
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structural alignment between construct and a crystal structure (PDB ID: 1D2T). The modeled 

enzyme construct consists of 29 H-bonds donors, 3 helixes, 70 turns, and no strands.  

 

Table 3. Vanadium-binding and active site similarity regions  

identified in archaeal vanadium-dependent phosphatases 

Construct 
Structural 

template 

Metal-

binding site 
Active site Score 

1 1D2T 90-180 Ala123, Asp124, Tyr125 5.578 

2 2IPB 90-180 Leu172, Val173, Glu174,His175 1.677 

3 2IPB 90-180 Leu162, Val163, Glu164,His165 4.872 

4 1QI9 95-175 Val166, Gly167, Val168, His169 4.822 

5 1D2T 95-175 Val163, Gly164, Val165, His166 2.938 

6 2E77 85-170 Leu176, Gly177, Ser178 2.507 

7 1D2T 105-155 Thr104, Ser105, Phe106 4.439 

8 2IPB 85-170 Leu160, His161, Val162,His163 1.651 

 

 
a) Ramachandran plot b) structural superimposition 

 
 c) Errat2 d) PROVE 

 
e) sequence alignment 

Fig. 3 Structure validation and quality analysis of the designed enzyme construct 
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The conformational stability of this construct was further evaluated by molecular dynamic 

simulation (Table 4). It shows that the top-five conformations of this construct are stable in 

torsion and total molecular energies (-1126 kcal/mol). Overall structural quality assessments 

implied that the enzyme construct derived from T. onnurineus NA1 is structurally stable with 

low conformational flexibility.  

 

Table 4. Molecular dynamic simulation data for top-five lower energy conformers  

of enzyme construct (All of the molecular energies are expressed as kcal/mol) 

Conformer 
Total 

energy 

van der Waals 

energy  

Electrostatic 

energy 

Torsion 

energy 

Temperature, 

K 

1 -1126.66 -311.69 -1303.54 151.23 303.87 

2 -1126.40 -294.53 -1283.63 139.21 302.05 

3 -1126.28 -319.58 -1282.69 151.70 304.11 

4 -1126.17 -315.37 -1358.73 154.05 301.93 

5 -1125.97 -286.04 -1282.31 141.42 303.16 

 

The structure of the enzyme construct is more reliable than the near-native conformation. 

The stability of its conformation may be consecutively maintained with molecular motions by 

acting van der Waals interactions and electrostatic forces. Moreover, internal molecular forces 

could not distort the stability of the construct-substrate complex as a strong molecular 

interaction measured at the functional site. Significant stability of its complex and catalytic 

function may be retained by aromatic stacking similar to earlier investigations on xylanase 

[32] and α-amylase [2].  

 

Binding site mapping and interaction analysis   
We evaluated the possible molecular interactions of this enzyme construct with substrates. 

We used different substrates for docking studies. They are MI6P (1D-myo-Inositol 

1,2,3,4,5,6-hexakisphosphate or phytic acid), MI4P (1D-myo-inositol 3,4,5,6-

tetrakisphosphate) and MI3P (1D-myo-inositol 1,3, 4-trisphosphate). The best docking models 

were selected based on the molecular interaction types and binding affinity of the substrate to 

construct. Molecular docking studies indicate that the binding energy of the construct-

substrate complex ranges from -5.73 to -1.28 kcal/mol. We obtained a suitable docked model 

when MI4P was docked into the construct. It has 5.09 kcal/mol intermolecular energy and -

4.03 kcal/mol internal energy. There are nine H-bonds contributed between the carbonyl 

group of MI4P and side chains of Lys121, Asp124, His171, Trp172, and Asp175 of the 

construct. All possible interaction sites and distances between individual atoms of MI4P and 

binding residues of the construct are O6-Lys121 (3.28Å), O14-Lys121 (2.77Å), H10-Asp124 

(2.85 Å), O16-His171 (2.81 Å), O17-Asp175 (2.67 Å), H8-Asp175 (2.61Å), O4-Trp172 

(3.02Å), O3-Trp172 (3.46Å) and O1-Trp172 (3.44Å).  

 

Fig. 4 presents different molecular graphical representations. Fig. 4a shows the enzyme 

construct in ribbon view, Fig. 4b – the enzyme interactive view with MI4P, Fig. 4c – the 

electrostatic potential view with MI4P, while Fig. 4d – a hydrogen-bonding pattern.  

Fig. 4e demonstrates the predicted binding energies of different substrates (MI6P, MI4P and 

MI63) into the enzyme construct. 
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a) molecular view   b) docking view with MI4P 

  
 

 c) electrostatic potential view with MI4P d) H-bonding pattern 

 
e) binding energies prediction 

Fig. 4 Molecular graphical representations.  

The yellow/blue dot lines denote the hydrogen bonds.  

All the amino acid residues are shown inline drawing and colored  

by residue types in which hydrogen is colored white,  

carbon green, oxygen red, nitrogen blue, and sulfur orange.  

Ligand is shown in a stick in which carbon is colored tints,  

hydrogen gray, nitrogen blue, and sulfur orange.  

All the interaction distances are represented as RMSD and expressed in Å.  

 

A proper transition state stabilization is a key challenge to designing an enzyme with native 

activity [12, 22]. Transition state mimics of our construct may be induced by forming 

covalent bonds between vanadium ions and a variety of ligands [32]. Moreover, our approach 

was simply based on the evolutionary conservation of its vanadium-binding center, suggesting 
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the probability of transition state stabilization during catalytic reactions. Several molecular 

modeling and docking studies have been conducted to investigate the structure, function, and 

catalytic mechanisms of some hypothetical proteins from plant and pathogenic bacteria  

[23, 26, 31, 37, 39]. Molecular docking studies of this work indicated that the construct was 

catalytically suitable to convert MI3P and MI6P. Asp124, Trp172, and Asp175 are the 

primary covalent attachment site for MI6P and MI4P. The construct was more suited for 

MI4P than MI3P and MI6P due to a strong binding affinity calculated for MI4P.  

Hence, molecular interaction data is supported to describe its catalytic efficiency on different 

substrates as similar to earlier work [5].  

 

 

Fig. 5 Proposed chemical reaction catalyzed by a designed phytase construct  

 

Our enzyme construct may remove orthophosphates from MI6P, MI4P, and MI3P and finally 

produce MIP similar to the catalytic function of MIPPP (myo-inositol polyphosphate-5-

phosphatase; EC 3.1.3.56) and MuIPPP (EC 3.1.3.62). As shown in Fig. 5, a proposed 

chemical reaction catalyzed by a designed phytase construct is represented.  

 

The proposed enzyme construct has diverse substrate-binding specificity, which is closely 

related to myo-inositol polyphosphate-5-phosphatase and multiple inositol polyphosphate 

phosphatases. It could act on MI4P and then convert to MI3P by removing the phosphate 

group. The analogous enzymes are present in the inositol polyphosphate pathway [21], and 

the active structure of phytase (MI6Pase) is evolutionarily conserved [15, 42, 51]. Enzymes 

from thermophilic archaea are more conserved than other archaeal enzymes even at the 

sequence level [6]. Since, the designed enzyme is a good candidate for catalytic function on a 

wide range of substrates by earlier works [2, 12, 15, 18, 22, 37, 42, 49].  

 

Conclusion 
The molecular evolution-directed approach is a reliable one for designing enzyme construct 

with diverse substrate-binding specificity, particularly with MI4P. Enzyme construct derived 

from sequences of vanadium-dependent phosphatases closely resembles myo-inositol 

polyphosphate-5-phosphatase and multiple inositol polyphosphate phosphatases. Considering 

its substrate specificity and catalytic competence, the designed enzyme would replace native 

phytase and MIPPP enzymes in the agriculture and food industry and treat environmental 

hazards. A degree of evolutionary conservation in the catalytic domain is a very decisive 

discernment for the catalytic competence and substrate-specificity of any designed industrial 
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enzymes. The present approach would provide an insight to design further experimental set-

up for industrial scale-up of synthetic enzymes using enzyme engineering.  
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