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Abstract: A new adaptive linearizing control algorithm that stabilizes the carbon source 

concentration in a desired value is proposed. This algorithm is applied to recombinant protein 

production by Escherichia coli. A model for control of the investigated process is derived. 

The model identification is made based on experimental data of the batch phase of the process. 

The operating model includes two sub-models. Each of them describes one of the two 

physiological states through which the process passes. Switching from one model to another 

depends on the sign of a key parameter obtained from the acetate measurements. A cascade 

scheme of software sensors for the estimation of two biomass growth rates included in the 

structure of the proposed control algorithm is derived. Simulation studies of the developed 

closed system have been carried out. The results of the impact of an open-loop control system 

on the same object are compared.  
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Introduction 
Biotechnological processes as highly nonlinear and non-stationary require special methods for 

their monitoring and control. Modelling of these processes is most often done through mass 

balance equations, and for the purposes of real-time process monitoring and control, these 

models usually include concentrations of biomass, main substrates, and products [2]. The aim 

is to describe the dynamics of the processes as close as possible to the experimental data on the 

one hand, and on the other hand – their structure should not be too complex, which would make 

their application difficult. These models have found wide application in monitoring and 

controlling processes with a single basic product and substrate, [2, 8] as well as in modelling of 

more complex processes [6, 7].  

 

Another successful approach, close to the previous one concerning mass balance equations and 

modelled variables, is the state decomposition approach, the so-called functional state approach 

[21-23]. The concept implementation leads to a process description with simpler and more 

transparent local models. The approach was originally developed for yeast growth processes. 

Based on the similarities of the main metabolic pathways of yeast and bacteria, it is applied 

successfully for the modelling of Escherichia coli cultivations [21-23].  

 

Several classes of model-based software sensors (SS) are presented in the literature for on-line 

monitoring of biotechnological processes [8, 10, 14]. The most popular are mechanistic models 

derived from first principles [21, 22], classical observers with full knowledge of models, such as 
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the Luenberger and the Kalman observers [2, 13], asymptotical observers [2, 17], observer-

based estimators [2, 8, 11], nonlinear observers [2], adaptive observers [2, 14, 18], etc. 

 

Although the considered above software sensors refer to different bioprocesses, only a few 

examples concern their implementation to complex ones, described by dynamical models 

containing several balance equations with complex kinetics.  

 

Regarding the control of these processes, many approaches have been applied in the literature, 

summarized in the review papers [5, 8, 15, 16]. Some of the more used ones are P (PID) control 

[6, 24], adaptive control [2, 8, 10], robust adaptive control [18, 19], robust tracking control [3], 

extremum seeking control [26], nonlinear control [4, 9, 20], multiple nonlinear model adaptive 

control [27, 28], sliding mode control [25], nonlinear predictive control [1, 4], etc. Recently, 

in [12], a novel model-based control strategy for the direct control of biomass-specific 

productivity in recombinant E. coli fed-batch processes was established under the usage of 

nonlinear feedback linearization and the implementation of a two-degrees-of-freedom 

controller. Future experimental verification will concretize the potential of the control strategy 

towards the establishment of continuous and more productive recombinant production 

processes. 

 

Another engineering approach for bioprocess control synthesis is the widely used adaptive 

linearizing control originally proposed for biotechnological processes in [2, 8], and its 

modifications and applications can be found in [10, 11, 20]. 

 

Escherichia coli is the most widely used host microorganism for recombinant protein (RP) 

production. These proteins are used to develop enzymatic assays. They serve as valuable tools 

for investigating cellular responses to stress, and disease situations. RP are used in food 

production, agriculture, and bioengineering. For example, enzymes can be added to animal feed 

to increase the nutritional value of feed ingredients, reduce feed and waste management costs, 

support animal health, improve the environment, etc. The importance of RP has increased 

rapidly for basic life science research, diagnostic reagents and therapeutic drugs. Their role in 

biotechnology is irreplaceable. 

 

A high-cell density fed-batch fermentation of E. coli is characterized by different physiological 

states [6, 7] during the cultivation and respectively by multiple growth rates of biomass, which 

is directly related to the target product. According to the approach in [2], the reaction scheme 

of such a process could be presented as a set of the following two main reactions (metabolic 

pathways), which correspond to the process's physiological states: 

 

 Oxidative growth on glucose with specific growth rate µ1: 

𝑘1𝑆 + 𝑘4𝑂 
𝜇1
→  𝑋 +  𝑘5𝐶,       (1) 

 

 Fermentative growth on glucose with specific growth rate µ2: 

𝑘2𝑆 +  𝑘6𝑂 
𝜇2
→  𝑋 +  𝑘7𝐶 +  𝑘3𝐴,      (2) 

 

where X, S, A, O and C are concentrations of biomass, glucose, acetate, dissolved oxygen and 

carbon dioxide in the culture broth, k1-k7 – yield coefficients. 
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The general requirement for process control design is to have available on-line information 

about all main process variables. The control task from the expert’s point of view is to maintain 

a previously set low value of glucose concentration in the bioreactor. 

 

The purpose is to investigate the possibilities of increasing the efficiency of RP production by 

applying closed-loop adaptive linearizing control. For this purpose, a general dynamical model 

(GDM) of the process is derived using the process reaction scheme. The observer of 

unmeasured variable – biomass as the target product is designed using on-line measured 

variables – glucose and intermediate product/substrate acetate. The derived control algorithm 

is investigated by simulations. A comparison of the results from the proposed closed-loop 

control with а control open-loop algorithm [20] is done. The new algorithm shows better results 

that are encouraging for its application in laboratory conditions.  

 

Materials and methods 

Development of cascade software sensor  

for the monitoring of the biotechnological process 
 

Operational model 

An operational model has been developed [31] based on the scheme of reactions (1), and (2) 

for the considered process. It consists of two sub-models describing the oxidative growth on 

glucose – sub-model (3) and oxidative-fermentative growth of biomass on glucose – sub-model 

(4) as follows: 

 

𝑑

𝑑𝑡
 [

𝑋
𝑆
𝐴

] =  [
1

−𝑘1

0
] 𝜇1(𝑡)𝑋 −

𝐹𝑖𝑛,𝑆

𝑊
[
𝑋
𝑆
𝐴

] +  
𝐹𝑖𝑛,𝑆

𝑊
 [

0
𝑆𝑖𝑛

0
],      (3) 

 

𝑑

𝑑𝑡
 [

𝑋
𝑆
𝐴

] =  [
1 1

−𝑘1 −𝑘2

0 𝑘3

] [
𝜇1(𝑡)
𝜇2(𝑡)

] 𝑋 −
𝐹𝑖𝑛,𝑆

𝑊
[
𝑋
𝑆
𝐴

] +  
𝐹𝑖𝑛,𝑆

𝑊
 [

0
𝑆𝑖𝑛

0
],     (4) 

 

where 𝐹𝑖𝑛,𝑆 is the feed rate; 𝑆𝑖𝑛 – glucose concentration in the feed solution; W – the weight of 

the bioreactor; X, S, and A – concentrations of biomass, glucose and acetate, respectively; 

µ1 and µ2 – specific growth rates. The growth rates RX1 = µ1X and RX2 = µ2X are considered 

unknown time-varying parameters that have to be estimated using available on-line 

information. 

 

Cascade software sensor and stability analysis 

A four-step cascade scheme of software sensors has been developed for process monitoring. 

The general scheme is presented in Fig. 1. Input information includes real-time measurements 

of acetate (A) and glucose (S) concentrations. The concentrations of these variables can be 

measured on-line by near-infrared spectroscopy, high-performance liquid chromatography 

(HPLC) [29, 30], as well as by flow injection analysis (FIA) [20]. The outputs of the monitoring 

scheme are: 

 Acetate production rate, Rap – the first step of the cascade structure; 

 Fermentative biomass growth rate, RX2 – second step; 

 Rate of oxidative growth of the biomass, respectively RX1 – third step; 

 Biomass concentration, X, and specific rates, µ1 and µ2, relating to the oxidative and 

fermentative growth of biomass – fourth step; 
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 Rate of glucose consumption, RS – estimates of this parameter are not included in the 

cascade structure, but provide valuable information about the process, and can be used 

in the verification of the obtained estimates of the rates. 

 

The software sensors developed below are derived according to the following assumptions: 

 The parameters of models (3) and (4) related to transport dynamics – feeding rate, 

glucose concentration in the feeding solution and the weight of the culture medium in 

the bioreactor are known; 

 The parameters k1-k3, which are inversely proportional to the yield coefficients, 

are known constants. 

 

If the values of acetate kinetics, Ra, (in the considered case is equal to Rap) are greater than zero, 

Ra > 0, this is an indication that the microorganisms are in a state of oxidative-fermentative 

growth on glucose. Monitoring of this physiological state involves a software sensor of the rate 

of acetate production, Rap, which is the input of a software sensor of the rate of fermentative 

growth on glucose, RX2, which in turn is used as the input of a software sensor of the rate of 

oxidative growth on glucose, RX1. The obtained estimates for RX1 and RX2 allow us to calculate 

biomass concentration estimates and on this basis estimate the specific growth rates µ1 and µ2. 

If the values of acetate kinetics are equal to zero, Ra = 0, this is a sign that there is no acetate 

content in the medium and the growth of the microorganism is oxidative on glucose only. 

 

 

Fig. 1 Scheme of the software sensor 

 

On-line estimation of acetate production rate  

The software sensor of acetate production rate, Rap, is activated when the time-derivative of 

acetate measurements, dA/dt  0. According to the approach proposed in [2], the estimator 

structure is presented by the following system: 

 
𝑑𝐴̂

𝑑𝑡
=  𝑅̂𝑎𝑝 −

𝐹𝑖𝑛,𝑆

𝑊
𝐴𝑚 +  𝑤1(𝐴𝑚 −  𝐴̂ ),       (5) 

 
𝑑𝑅̂𝑎𝑝

𝑑𝑡
=  𝑤2(𝐴𝑚 −  𝐴̂ ),         (6) 

 

where Ȓap and Â are the estimates of acetate production rate (Rap) and acetate concentration (A), 

respectively; Am – the measured values of A including white noise (ε1), Am = A + ε1; w1 and w2 

– estimator tuning parameters which must fulfil the robustness conditions. Eq. (6) is derived 

assuming that the dynamics of Rap estimates are governed by the difference between the 

measured and estimated acetate value multiplied by the tuning parameter w2. 
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Stability analysis 

Defining the errors Ã = Аm – Â and 𝑅̃𝑎𝑝 = 𝑅𝑎𝑝 − 𝑅̂𝑎𝑝, the following system is derived: 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 +  𝜈            (7) 

 

with 

𝑥 =  [
𝐴̃

𝑅̃𝑎𝑝
],             𝐴 =  [

−𝑤1 1
−𝑤2 0

],       𝜈 =  [
−𝜀1 (

𝐹𝑖𝑛,𝑆

𝑊
+ 𝑤1)

−𝜀1𝑤2 +
𝑑𝑅𝑎𝑝

𝑑𝑡

]. 

 

Let h1 and h2 are real eigenvalues of matrix A related by definition to w1 and w2 as follows: 

  

𝑤1 = −(ℎ1 +  ℎ2)  and  𝑤2 =  ℎ1ℎ2.        (8a) 

 

Real values are chosen to avoid oscillations in the estimates that do not correspond to the 

physical indicators related to the estimated parameters. 

 

If it is additionally assumed that there is equality between the eigenvalues as h1 = h2 = h with 

h – a negative constant to ensure the stability of the system (5)-(6), the relation (8a) is rewritten 

in the form: 

 

𝑤1 = – 2ℎ   and   𝑤2 = 𝑤1
2 4⁄ .        (8b) 

 

The selection of a double eigenvalue has several advantages:  

(i) the degrees of freedom of the algorithm is reduced,  

(ii) it allows an easy interpretation in terms of convergence, and 

(iii) the calculation of the tuning parameters is straightforward.  

 

Applying the relationships (8b), the tuning of the estimation algorithm is reduced to the choice 

of one design parameter h. 

 

Estimates of the rate of fermentative biomass growth were obtained in a second step 

by a mathematical expression which relates RX2 to the rate of acetate production, Rap, through 

the yield factor k3 as follows: 

 

𝑅̂𝑋2 =  𝑅̂𝑎𝑝 𝑘3⁄ ,          (9) 

 

where k3 is the yield coefficient as presented in the model (4). 

 

Estimation of the rate of oxidative growth 

The third step involves a software sensor of the oxidative growth rate, RX1. It is derived from 

the dynamic equation for the glucose concentration, S, and the inputs: the measurements for S, 

as well as the estimates of RX2 obtained in (5), (6) and (9). The software sensor is described 

as follows: 

 
𝑑𝑆̂

𝑑𝑡
=  −𝑘1𝑅̂𝑋1 −  𝑘2𝑅̂𝑋2 −

𝐹𝑖𝑛,𝑆

𝑊
𝑆𝑚 +

𝐹𝑖𝑛,𝑆

𝑊
𝑆𝑖𝑛 +  𝑤3(𝑆𝑚 − 𝑆̂),    (10) 

 
𝑑𝑅̂𝑥1

𝑑𝑡
=  𝑤4(𝑆𝑚 −  𝑆̂),          (11) 



 INT. J. BIOAUTOMATION, 2023, 27(3), 147-160 doi: 10.7546/ijba.2023.27.3.000930 
 

152 

where 𝑅̂𝑋1 are the estimates of RX1, w3 and w4 – parameters of the estimators (10) and (11) with 

values that are chosen according to the procedure proposed above based on stability analysis 

and choice of a tuning parameter.  

 

For (10) and (11) the relations between w3, w4 and h are as follows: 

 

𝑤3 =  −2ℎ   and   𝑤4 =  − 𝑤3
2 4𝑘1⁄ .        (12) 

 

The growth rate, RX1, exists always but the growth rate, RX2, appears when the specific glucose 

consumption rate is equal to or higher than the so-called critical one [31] and is given below in 

detail in Eqs. (21) and (22). In the opposite case, RX2 = 0. 

 

Estimation of biomass concentration and specific rates 

This estimation can be done based on the following biomass concentration balance equation, X, 

from the model (4): 

 
𝑑𝑋̂

𝑑𝑡
=  𝑅̂𝑋1 +  𝑅̂𝑋2 −

𝐹𝑖𝑛,𝑆

𝑊
𝑋̂,         (13) 

 

where 𝑅̂𝑋1 and 𝑅̂𝑋2 are the estimates of the growth rates RX1, and RX2, respectively, derived 

from algorithms (5), (6), (9) and (12), and 𝑋̂ are the estimates of biomass concentration X.  

 

The latter allows the calculation of the specific rates µ1 and µ2 corresponding to the rates of 

oxidative RX1 and fermentative RX2 growth as follows: 

 

𝜇̂1 =  𝑅̂𝑋1 𝑋̂⁄ ,           (14) 

 

𝜇̂2 =  𝑅̂𝑋2 𝑋̂⁄ .           (15) 

 

Estimation of the rate of glucose consumption 

Estimating the rate of glucose consumption from measurements of this substrate, similar to SS 

(5) and (6), can be accomplished by an observer-based estimator represented by the following 

system: 

 
𝑑𝑆̂

𝑑𝑡
=  𝑅̂𝑆 −

𝐹𝑖𝑛,𝑆

𝑊
𝑆 +

𝐹𝑖𝑛,𝑆

𝑊
𝑆𝑖𝑛 +  𝑤5(𝑆𝑚 − 𝑆̂),       (16) 

 
𝑑𝑅̂𝑆

𝑑𝑡
=  𝑤6(𝑆𝑚 − 𝑆̂),          (17) 

 

where 𝑆𝑚 are the measured glucose concentration including white noise (ε2); Am = A + ε2, 

𝑅̂𝑆  is the estimate of the rate of glucose consumption, which are negative due to the 

consumption of the substrate; 𝑆 ̂ – estimates of glucose concentration; w5 and w6 – the setup 

parameters for SS (16) and (17), which are chosen depending on a double eigenvalue as follows: 

 

𝑤5 =  −2ℎ  and  𝑤6 =  −𝑤5
2 4⁄ .        (18) 
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Results and discussion 
The simulation investigations of the cascade scheme 
Simulation studies of the proposed software sensor scheme have been carried out, based on the 

developed non-structural models (3), and (4) of the process. Oxidative growth on glucose is 

represented by the model (3) with the following kinetic model for the specific growth rate 1: 

 

𝜇1 =  𝑞𝑆 𝑘1⁄ ,           (19) 

 

𝑞𝑆 =  
𝑞𝑆,𝑚𝑎𝑥𝑆

𝐾𝑆+𝑆
.           (20) 

 

Oxidative-fermentative growth on glucose is represented by the model (4) with the following 

kinetic equations for the specific growth rates 1 and 2: 

 

𝜇1 =  𝑞𝑆,𝑐𝑟𝑖𝑡 𝑘1⁄ ,          (21) 

 

𝜇2 =  (𝑞𝑆 − 𝑞𝑆,𝑐𝑟𝑖𝑡) 𝑘2⁄ ,         (22) 

 

with   𝑞𝑆 =  
𝑞𝑆,𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
  and    𝑞𝑆,𝑐𝑟𝑖𝑡 =  

𝑞𝑂,𝑚𝑎𝑥

𝑘𝑂𝑆
 

𝐾𝑖,𝑂

𝐾𝑖,𝑂 + 𝐴
. 

 

The identification of the kinetic parameters (𝑞𝑆,𝑚𝑎𝑥, 𝐾𝑆, 𝑘1, 𝑘2, 𝑘3, 𝑘𝑂𝑆, 𝑞𝑂,𝑚𝑎𝑥, 𝐾𝑖,𝑂) of the 

models was carried out based on the experimental data up to 10 hours of fermentation, 

which period could be considered as batch fermentation. All fermentation conditions are 

presented in [20]. The values of the model parameters, obtained in [31], are given in Table 1. 

 

Table 1. Model parameter values 

Parameters 𝑞𝑆,𝑚𝑎𝑥 𝐾𝑆  𝑘1 𝑘2 𝑘3 𝑘𝑂𝑆 𝑞𝑂,𝑚𝑎𝑥 𝐾𝑖,𝑂 

Values 2.044 0.148 2.67 20.59 10.77 2.184 0.685 20.198 

 

In Fig. 2 the results obtained by SS (5), (6) are presented. In Fig. 2a the modelled, estimated, 

and experimental values of acetate concentration are compared. As can be seen, the model data 

describe the experimental data with good accuracy and match the estimates. By the 18th hour, 

no acetate had accumulated in the culture medium and the microorganisms were only in a state 

of oxidative growth on glucose. After this period, acetate production begins and 

microorganisms grow in conditions of an oxidative-fermentative physiological state. In Fig. 2b 

modelled and estimated acetate production rate values are compared. Eigenvalues h = –25 and 

h = –12.5 were tested to investigate the convergence of the estimates and their sensitivity 

concerning the dRap/dt derivative. The results have negligible differences for the scores in both 

cases as can be seen in the figure. The presented estimation errors demonstrate better 

convergence and accuracy at the higher eigenvalue, especially at the beginning of the 

fermentation phase, where the maximum relative error reaches 60% for h = –12.5 and 25% for 

h = –25. 
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Fig. 2 Estimation of acetate production rate without noise in the measurements  

for the intermediate metabolite concentration  

 

In Fig. 3, a study was carried out with the same SS with white noise ε added to the acetate 

measurements, the average deviation of which represented 1% of the average value of the 

acetate concentration. The simulations were performed using lower eigenvalues compared to 

the previous study because the sensitivity to noise is very high for h exceeding 5. The maximum 

estimation errors for both cases (Fig. 3c) are almost twice as high as those in the absence of 

noise (Fig. 2c), and the averages even more so. Studies have shown that the proposed 

eigenvalues in the setup are a good compromise between the speed of convergence and 

sensitivity of the estimates to the perturbations under consideration. A higher eigenvalue is a 

better choice to tune the estimator, as it gives smaller errors and better convergence to the onset 

of the fermentative metabolic state, as can be seen in Fig. 3c. 

 
Fig. 3 Estimation of acetate production rate at 1% additive noise  

in the measurements for intermediate metabolite concentration  

 

error 
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Adaptive linearizing control design 
The linearizing control design consists of three main steps. The first one is a choice of the 

input/output model of the closed-loop system. In the case under consideration, the control 

system input is the feed rate, F, and the system output is the glucose concentration, S. 

Hence, the input/output model is presented with: 

 

𝑑𝑆 𝑑𝑡 = ⁄ − 𝑘1𝑅̂𝑋1 − 𝑘2𝑅̂𝑋2 − 𝐹𝑖𝑛,𝑆 𝑊⁄ 𝑆𝑚 + (𝐹𝑖𝑛,𝑆 𝑊⁄ )𝑆𝑖𝑛,    (23)  

 

where the estimates of two biomass growth rates are included. 

 

As a consequence of the specific structure of the GDM, the input/output model is linear 

concerning the control input (F). Hence, the second step is to select a stable reference model of 

the tracking error, (𝑆∗(t) – Sm(t)). A first-order reference model is selected. In the case of 

stabilisation, d𝑆∗dt = 0 because 𝑆∗ is a constant value, and the reference model can be presented 

as follows: 

 

𝜆(𝑆∗ − 𝑆𝑚) =  𝑑𝑆 𝑑𝑡⁄ ,         (24) 

 

where λ is the controller coefficient. Its value has been chosen so that the equation 

𝜆𝑑(𝑆∗ − 𝑆𝑚)/𝑑𝑡 = 0  is stable. 

 

The third step is a substitution of the input/output model (23) in the reference one (24):  

 

𝜆(𝑆∗ − 𝑆𝑚) = −𝑘1𝑅̂𝑋1 − 𝑘2𝑅̂𝑋2 − 𝐹𝑖𝑛,𝑆 𝑊⁄ 𝑆𝑚 + (𝐹𝑖𝑛,𝑆 𝑊⁄ )𝑆𝑖𝑛.    (25) 

 

The control algorithm is derived by solving Eq. (24) concerning control input F: 

 

𝐹 =  
𝑊(−𝜆(𝑆∗−𝑆𝑚)+ 𝑘1𝑅̂𝑋1+ 𝑘2𝑅̂𝑋2

𝑆𝑖𝑛−𝑆𝑚
.        (26) 

 

As can be seen, the complete information is available for the calculation of the control action: 

the estimates from the SS and the values of the yield coefficients from Table 1. 

 

In Fig. 4 the scheme of a closed-loop control system is shown. The value of 𝑆∗ was picked value 

of 0.01 and the concentration of glucose in the feed 𝑆𝑖𝑛 is 250 g/l, chosen from the expert’s 

point of view. 

 
Fig. 4 Control scheme 

 

In Figs. 5 and 6, a comparison between two control algorithms is done. 
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 a) control input F b) glucose 

 
 c) biomass d) weight 

 

Fig. 5 Linearizing control algorithm investigation 

 

 
 a)  b) 

Fig. 6 Open-loop control: а) experimental data for the concentrations of biomass,  

glucose and acetate; b) experimental data for weight, feed rate and oxygen transfer rate  

(red line) and carbon dioxide transfer rate (blue line) 

 
In Fig. 5 the results of the simulation investigations for the derived adaptive control are 

presented. They show that the control is turned on at the beginning of the process and up to 

30 h the working volume of the bioreactor (5 kg) is not exceeded. In Fig. 6, the results from 

open-loop control [20] are shown. The control is an exponential function precomputed and 

applied to the bioreactor. 
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Maintaining a constant value of 𝑆∗  can achieve the almost same concentration of biomass 

(target product) (Fig. 5c) as in Fig. 6a, but it can be noted that the biomass concentration in the 

proposed control continues to grow until the end of the process (Fig. 5c), while in the other one, 

retention and decline in biomass concentration after 25 h was observed (Fig. 6a). This decrease 

may be due to the combination of factors, which are the increased biomass density during the 

fermentation process and the presence of acetate, which starts to be produced around the 

20th hour. These factors inhibit the growth of biomass. 

 

At the same time, the weight at the end of the process is smaller (Fig. 5d), in comparison with 

Fig. 6b, which leads to better efficiency of the proposed control.  

 

Further research has to be done to investigate the impact of various disturbances on monitoring 

and control as well as the choice of algorithm‘s tuning parameter before applying this method 

in laboratory conditions. 

 

Conclusion 
A closed-loop control of fed-batch fermentation by E. coli is proposed. The derived adaptive 

linearizing control aims to stabilize the glucose concentration at a previous set value. 

It is proposed from an expert’s point of view. The process model is identified using 

the experimental data of the batch part of E. coli fermentation. The model is used to design 

observers of unmeasured two biomass growth rates. The observers are adaptive and included 

in the structure of the proposed control algorithm to determine the adaptive properties of the 

closed system. 

 

A comparison between two control algorithms – open-loop and closed-loop control of the same 

object is realized. The adaptive properties of closed-loop systems are advantageous in 

controlling non-linear and non-stationary processes such as biotechnological ones. 
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