
INT. J. BIOAUTOMATION, 2024, 28(2), 107-111 doi: 10.7546/ijba.2024.28.2.001002

Improved Speed of InterCriteria Analysis

Alexander Marazov1∗, Anthony Shannon2

1Institute of Biophysics and Biomedical Engineering
Bulgarian Academy of Sciences
Acad. Georgi Bonchev Str. Bl. 105.
Sofia 1113 Bulgaria
E-mail: alexander@biomed.bas.bg

2Warrane College University of New South Wale
Kensington NSW 2033 Australia
E-mail: tshannon@warrane.unsw.edu.au

*Corresponding author

Received: December 12, 2023 Accepted: March 14, 2024

Published: June 30, 2024

Abstract: We will show that the computation of the intercriteria counters can be done in
O(n logn) time (quasi-linear complexity). Up to this point, all implementations have used
O(n2) operations, which does not allow processing of data over hundreds of thousands.

Keywords: InterCriteria analysis, Quasi-linear complexity.

Introduction
The current known software implementations of Intercriteria Analysis [1] have used O(n2)
operations [3, 5–7]. This complexity makes processing data over hundreds of thousands pro-
hibitively slow. We will show that the computation of the intercriteria counters defined in [1]
can be done in O(n logn) time (quasi-linear complexity).

Notation
All the vectors we will consider later in this work are n-dimensional, the elements of which we
can order partially with a relation “≤“. The elements of the vectors at different indices need not
belong to the same set, but we will still write “≤“ for each partially ordered set.

Definition 1. Let k and l be two n-dimensional vectors. We say that indices i, j, i < j are in
disagreement [1], if and only if

ki ≤ k j ∧ li > l j ∨ ki > k j ∧ li ≤ l j

Definition 2. We will denote by count_disagreements(k, l) the number of disagreements be-
tween k and l. There are n(n− 1)/2 such combinations of indices i, j, i < j, which can be
trivially traversed in O(n2).

We will show that the number of disagreements between k and l, count_disagreements(k, l),
can be computed in O(n logn).

Definition 3. We say that indices i, j, i < j are in equality (indeterminacy) [1] if and only if

ki = k j ∧ li = l j

The equality can be defined in the natural way:

ki = k j ⇐⇒ ki ≤ k j ∧ k j ≤ ki

107

mailto:alexander@biomed.bas.bg
mailto:tshannon@warrane.unsw.edu.au

INT. J. BIOAUTOMATION, 2024, 28(2), 107-111 doi: 10.7546/ijba.2024.28.2.001002

Definition 4. We say that indices i, j, i < j are in agreement [1], if and only if neither are met
the definition of disagreement nor of indeterminacy.

Definition 5. Inversion in vector v we call combinations of indices i, j, i < j for which vi > v j
[8].

The inversions of a vector can be computed in O(n logn), as shown in [8]. The algorithm is
based on a modification of Merge Sort, which is of complexity O(n logn) [8].

For vectors that allow equalities between elements, we will introduce the following convenient
notation.

Definition 6. We call v̂ the enumerated vector of the vector v1 and we define its elements with
the ordered pairs:

v̂i = (vi, i)

We extend the order of the elements of v to a lexicographic order of enumerated vectors v̂.
Since the indices in the second component of an enumerated vector are unique, equalities of
enumerated vectors are not possible, even if there are equalities in the initial vector.

Definition 7. We will denote the number of inversions in a vector v by count_inversions(v).

Definition 8. Let k and l be two vectors. Let us introduce the notation sortk(l) which sorts the
elements of l by the order of k.

Let us write the above definition in terms of a sorting permutation. Let us look at the permutation
σ which sorts k. For indices i, j, i < j⇔ kσ(i) ≤ kσ(j). Then for the i-th element we have

sortk(l)i = lσ(i)

Sorting is an operation that can be performed in O(n logn) operations [8].

Theorem 1.
count_disagreements(k, l) = count_inversions(sortk̂(l̂))

Proof. We will first show that on any inversion in sortk̂(l̂)) there is a corresponding disagree-
ment between k and l. Next, we will show that for each disagreement between k and l, there
is an inversion in sortk̂(l̂). This will establish the existence of a bijection, proving the desired
equality.

For brevity, let us denote lk = sortk̂(l̂). By definition, lk
i = l̂σ(i), where σ is the permutation,

which sorts k̂.

(⇐) Let us fix an inversion in lk with indices i′, j′ for which i′ < j′ and lk
i′ > lk

j′ .

Let i, j be the images of i′, j′ in σ : i = σ(i′), j = σ(j′). Then we have

l̂i = l̂σ(i′) = lk
i′ > lk

j′ = l̂σ(j′) = l̂ j

1Similar to the function in Python enumerate, which gives a sequence (i,vi) from v.

108

INT. J. BIOAUTOMATION, 2024, 28(2), 107-111 doi: 10.7546/ijba.2024.28.2.001002

But l̂i > l̂ j is only possible when
li ≥ l j

Let us look into the two cases for i and j: i < j or i > j.

Let the first case i < j hold. From the definition of σ and σ(i′) < σ(j′) it follows that ki ≤ k j.
From l̂i > l̂ j and i < j it follows that li > l j. The equality li = l j is impossible because it would
mean that i > j. But from ki ≤ k j and li > l j we get a disagreement.

Let the second case i > j hold. From l̂i > l̂ j and i > j it follows that li ≥ l j. A tie in this case
is possible. From the definition of σ and i′ < j′ it follows that k̂i ≤ k̂ j. It’s here essential that
σ sorts k̂ to exclude the equality ki = k j. If we assume that the equality is fulfilled, this will
mean that i < j, which contradicts the case under consideration. It remains ki > k j li ≥ l j, which
means that j and i with j < i are disagreement in k and l.

With this, the direction (⇐) is proved.

(⇒) Let disagreement be fixed between k and l with indices i and j, i < j

ki ≤ k j∧ li > l j∨ ki > k j∧ li ≤ l j

Let i′ and j′ be the primes of i and j in σ : i = σ(i′), j = σ(j′).

lk
i′ = l̂σ(i′) = l̂i

lk
j′ = l̂σ(j′) = l̂ j

We have two possible cases:

The first of them is
ki ≤ k j∧ li > l j

li > l j leads to lk
i′ > lk

j′ .

From kσ(i′) ≤ kσ(j′) and the definition of σ follows that i′ < j′. The latter means that i′, j′ is an
inversion in lk.

The second possible case is
ki > k j∧ li ≤ l j

From kσ(i′) > kσ(j′) and the definition of σ it follows that i′ > j′. The inequality li ≤ l j implies
lk
i′ ≤ lk

j′ . Let us look at when equality is reached. lk
i′ = lk

j′ ⇔ l̂i = l̂ j. By the definition of l̂, for
this to hold, i = j, so with the vector l̂ listed. This leads to a contradiction. Therefore there can
be no equality, which makes j′, i′ inversion in lk.

With this, the direction (⇒) is proved.

109

INT. J. BIOAUTOMATION, 2024, 28(2), 107-111 doi: 10.7546/ijba.2024.28.2.001002

Calculation of intercriteria counters
Let us look at the definitions of intercriteria counters in [1] for two criteria k and l. We will
denote the object at index k with the index of the vector for brevity. Using the standard notation
from [1], Sµ

kl is the number of agreements, Sν
kl is the number of disagreements, Sπ

kl is the number
of equalities.

Using Theorem 1, we proved that Sν
kl can be computed in O(n logn).

Let us see how to calculate Sπ
kl in O(n logn). We form a vector z with elements zi = (ki, li).

We can sort z with the natural lexicographic ordering in O(n logn) operations. To determine
the number of elements that are equal to each other, we traverse the sorted vector z once. Let
na be the number of elements equal to a given value za. We can calculate with the formula
na(na− 1)/2 the number of combinations of elements. Finally, we sum these values for each
different value of za to obtain Sπ

kl .

We calculate the number of agreements by subtracting the other two counters from the number
of combinations:

Sµ

kl =
n(n−1)

2
−Sπ

kl−Sν
kl

Open problems
The computations of the degree of disagreement of the InterCriteria Analysis [1] share similarity
to the Kendall metric τ [9]. It is known that the Kendall metric τ can be reduced to counting
inversions [4]. As we have shown, we can reduce the computation of count_disagreements
to counting inversions. A result which allows even counting inversions with O(n

√
logn) is

presented of Chan and Patrasku [2].

Since for the equality counter calculation Sπ
kl we did not use inversions, the question, whether

the intercriteria counters can be calculated for O(n
√

logn), remains open.

Conclusion
The existing software implementations of InterCriteria Analysis have been observed to employ
O(n2) operations for their processing tasks. This quadratic complexity presents a significant
limitation, particularly when handling large datasets, rendering the processing of hundreds of
thousands of data points impractically slow.

Our study aimed to demonstrate a more efficient approach. Specifically, we proposed that the
computation of the InterCriteria counters can be accomplished in O(n logn) time complexity.
This improvement signifies a shift towards quasi-linear complexity, offering a more scalable
and expedient solution for data processing tasks.

References
1. Atanassov K. T., D. Mavrov, V. Atanassova (2014). Intercriteria Decision Making: A New

Approach for Multicriteria Decision Making, Based on Index Matrices and Intuitionistic
Fuzzy Sets, Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 11, 1-8.

2. Chan T. M., M. Patrascu (2010). Counting Inversions, Offline Orthogonal Range Counting,
and Related Problems, Proceedings of the Twenty-first Annual ACM-SIAM Symposium
on Discrete Algorithms, p. 161, doi: 10.1137/1.9781611973075.15.

3. Ikonomov N., P. Vassilev, O. Roeva (2018). ICrAData – Software for InterCriteria Analysis,
Int J Bioautomation, 22(1), 1-10.

110

INT. J. BIOAUTOMATION, 2024, 28(2), 107-111 doi: 10.7546/ijba.2024.28.2.001002

4. Knight W. (1966). A Computer Method for Calculating Kendall’s Tau with Ungrouped
Data, Journal of the American Statistical Association, 61(314), 436-439.

5. Mavrov D. (2015). Software for InterCriteria Analysis: Implementation of the Main Algo-
rithm, Notes on Intuitionistic Fuzzy Sets, 21(2), 77-86.

6. Mavrov D. (2015–2016). Software for InterCriteria Analysis: Working with the Results,
Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 37-44.

7. Sotirova E. N., A. G. Shannon, K. T. Atanassov (2022). The Modelling of University Pro-
cesses through Intuitionistic Fuzzy Evaluations, Newcastle-upon-Tyne: Cambridge Schol-
ars, 57-90.

8. Roughgarden T. (2017). Algorithms Illuminated (Part 1): The Basics, New York: Sound
Like Yourself Publishing, p. 62. (Distributed by Cambridge University Press).

9. Kendall M. (1948). Rank Correlation Methods, Charles Griffin & Company Limited.

Alexander Marazov, Ph.D. Student
E-mail: alexander@biomed.bas.bg

Alexander Marazov received his B.Sc. Degree in Applied Mathematics
in 2009 and M.Sc. Degree in Mathematical Modeling and Numerical
Methods in 2013, both from Sofia University “St. Kliment Ohridski”,
Bulgaria. He is currently a Ph.D. student at the Institute of Biophysics
and Biomedical Engineering, Bulgarian Academy of Science.

Emeritus Professor Anthony Shannon, Ph.D., Ed.D., D.Sc.
E-mail: tshannon@gmail.com

Professor A. G. (Tony) Shannon AM is a Member of the Order of Aus-
tralia and an Emeritus Professor of the University of Technology, Syd-
ney. He has just completed service as the Deputy Chancellor of the
University of Notre Dame Australia, and he is currently a Director of
Academic Studies at the Australian Institute of Music. He holds the
Doctoral Degrees of Ph.D., Ed.D. and D.Sc. He is co-author of numer-
ous publications in medicine, mathematics and education. He enjoys
reading, walking, theatre, number theory, watching rugby, and thor-
oughbred racing.

© 2024 by the authors. Licensee Institute of Biophysics and Biomedical Engineering,
Bulgarian Academy of Sciences. This article is an open access article distributed
under the terms and conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).

111

mailto:alexander@biomed.bas.bg
mailto:tshannon@gmail.com
http://creativecommons.org/licenses/by/4.0/

