
 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

133

Comparative Study of Population-based Metaheuristic

Algorithms in Case Study of DNA Sequence Assembly

Lala Septem Riza1*, Yudi Prasetyo1, Muhammad Iqbal Zain1,

Herbert Siregar1, Rani Megasari1, Topik Hidayat2,

Diah Kusumawaty2, Miftahurrahma Rosyda3

1Department of Computer Science Education

Universitas Pendidikan Indonesia

Dr. Setiabudi Str. No. 229, Bandung 40154, Indonesia

E-mails: lala.s.riza@upi.edu, yudiprasetyo@upi.edu, iqbalzain99@upi.edu,

 herbert@upi.edu, megasari@upi.edu

2Department of Biology Education

Universitas Pendidikan Indonesia

Dr. Setiabudi Str. No. 229, Bandung 40154, Indonesia

E-mail: topikhidayat@upi.edu, diah.kusumawaty@upi.edu

3Informatics Department

Universitas Ahmad Dahlan

Kapas 9 Str. Yogyakarta 55166, Indonesia

E-mail: miftahurrahma.rosyda@tif.uad.ac.id

*Corresponding author

Received: December 22, 2023 Accepted: May 21, 2024

 Published: September 30, 2024

Abstract: Modern technology encounters difficulties performing DNA sequencing on long

DNA sequences. Therefore, longer DNA sequences must be cut into smaller fragments.

DNA sequence assembly is the process of combining several short genome sequences to create

a longer DNA sequence. This study aims to compare the performance of several population-

based metaheuristic algorithms in handling the DNA sequence assembly problem based on

computation time, number of contigs, and overlap value. The algorithms used in this study

include the Honey Badger Algorithm (HBA), Lévy Flight Distribution (LFD), African Vultures

Optimization Algorithm (AVOA), and Particle Swarm Optimization (PSO). Overall, AVOA has

the best results where it can produce the most total overlap, where the most overlap is 49952

in the dataset with length 750 and coverage 25. AVOA also has the best efficiency because it

has a faster computation time than other algorithms in all datasets. Besides AVOA, PSO

produces total overlap and computation time that is not far from AVOA. However, based on

the number of contigs, HBA is able to create the least number of contigs, especially on datasets

with a length of 750 and coverage of 15, with a total of 6 contigs.

Keywords: DNA sequence assembly, Optimization, Population-based metaheuristic,

R programming language, String matching.

Introduction
DNA sequencing is a fundamental technique in molecular biology that enables the

determination of the exact sequence of nucleotides in a DNA molecule. It involves methods

such as Sanger sequencing and next-generation sequencing (NGS), which have revolutionized

the field of genomics and been instrumental in numerous scientific breakthroughs.

Sanger sequencing, also known as chain termination sequencing, was the first method

developed to sequence DNA and was the method used to sequence the first human genome [39].

On the other hand, NGS technologies, such as Illumina sequencing, have enabled high-speed

mailto:lala.s.riza@upi.edu
mailto:iqbalzain99@upi.edu
mailto:topikhidayat@upi.edu

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

134

sequencing, drastically increasing the speed and volume of data generation [30].

With current technology, long DNA sequences are complex to sequence using an accurate

sequencing process. For example, human DNA is 3.2 billion nucleotides long and cannot be

read in one process. Because of this problem, long DNA sequences must be broken down into

smaller fragments in a sequencing process called shotgun sequencing. This approach breaks

large pieces of DNA into small enough pieces that machines can automatically process them.

De novo genome assembly assembles a series of short genomic sequences, also called reads,

into longer DNA sequences, called contigs. De novo genome assembly is used for new

genomes, i.e., when there is no existing reference genome. There is an excellent need for

de novo assembly because the number of fully sequenced species is minimal compared to the

estimated number of organisms present [26].

Several factors complicate the assembly process. First, repetitive sequences in the genome can

lead to ambiguity in assembly because it is difficult to determine where these repeats occur in

the genome [3]. Second, sequencing errors can lead to errors in assembly [33]. Finally, the size

and complexity of the assembled genome can also present difficulties. For example, making

a human genome, which is approximately 3 billion base pairs in size, is a much more complex

task than assembling a small bacterial genome. Despite these challenges, advances in

sequencing technology and computational methods continue to improve the accuracy and

efficiency of DNA sequence assembly.

Traditionally, DNA sequence assembly has been implemented using three different approaches.

The first is the Overlap-Layout-Consensus (OLC) method. Examples of tools using this method

are PASQUAL [28] and MAP [27]. The OLC approach is based on finding overlaps between

reads and constructing a graph where each vertex represents reads, and each edge represents

the similarity of overlaps between reads. The graph is then traversed and transformed to extract

long contigs. The second approach to implementing DNA sequence assembly is based on

greedy algorithms such as SSAKE [44] and SHARCGS [9]. In this case, reads are progressively

overlapped using seed reads to generate longer contigs. The third approach to implement

DNA sequence assembly uses the De Bruijn graph (DBG) as a data structure, such as

Velvet [48], SPAdes [4], and ABySS [40]. DBG-based DNA sequence assembly [36] cuts reads

into consecutive sub-sequences of length k, called k-mers. A vertex represents each k-mer, and

the edge between two vertices represents k – 1 overlaps.

Optimization is a fundamental concept in computer science and mathematics that involves

finding the best solution among a set of possible solutions to a given problem. The “best”

solution is usually defined in terms of an objective function that measures the quality of

the solution. Optimization problems can be found in various fields, including engineering,

economics, data analysis, and bioinformatics [25]. Different optimization problems exist, such

as linear and nonlinear, discrete and continuous, and deterministic and stochastic, each with its

own characteristics and solution methods [6]. However, many real-world optimization

problems are complex and difficult, often involving large solution spaces, multiple conflicting

objectives, and dynamic environments [8].

Metaheuristic algorithms have been developed to address these challenges. Metaheuristics are

problem-independent, high-level algorithmic frameworks that provide guidelines or strategies

for developing heuristic optimization algorithms [5]. Metaheuristics are often used to solve

complex optimization problems where traditional methods are neither effective nor efficient.

Metaheuristics can be divided into two main categories: single-solution metaheuristics, such as

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

135

Simulated Annealing [23] and Tabu Search [13], and population-based metaheuristics, such as

Genetic Algorithms (GA) [15], Particle Swarm Optimization [22], Ant Colony Optimization

[10], and Differential Evolution [42]. These kinds of algorithms have been widely used in

various fields due to their ability to effectively and efficiently explore the solution space and

their flexibility to adapt to different problems [25, 46]. However, each algorithm has advantages

and disadvantages, and the selection of an algorithm often depends on the specific

characteristics of the issue at hand [2, 21].

Many metaheuristic algorithms that follow the OLC approach and aim to compute Hamiltonian

paths on overlap graphs have been developed to tackle the DNA sequence assembly problem,

in addition to methods based on graph theory. Several studies have been conducted to design

and test GA-based DNA sequence assembly techniques [7, 19, 34]. The potential of algorithms

based on swarm intelligence has also been explored, with examples including ant colony

optimization [31], Particle Swarm Optimization (PSO) [18, 29, 37, 43], Bee Algorithms [47],

Cuckoo Search Algorithm [20], and Penguin Search Optimization Algorithm [12].

This study aims to compare the performance of population-based metaheuristic algorithms on

the DNA sequence assembly problem. The algorithms used are PSO [22], Honey Badger

Algorithm (HBA) [14], Lévy Flight Distribution (LFD) [16] and African Vultures Optimization

Algorithm (AVOA) [1]. We explore the potential of recently developed metaheuristic

algorithms. While PSO has demonstrably addressed DNA assembly challenges [18], we aim to

evaluate some novel approaches that hold promise for surpassing PSO’s performance.

LFD [16], HBA [14], and AVOA [1] all possess intriguing characteristics that make them well-

suited for this task. These algorithms have shown advancements in various aspects compared

to PSO in tackling complex problems, suggesting their potential to yield superior results in

DNA assembly. This study proposes a computational model to solve the DNA sequence

assembly problem and compares the performance of each algorithm based on computation time,

number of contigs, and overlap value.

Materials and methods

Computational model
The computational model is shown in Fig. 1. The model created in this study is used to

reconstruct the DNA sequence (short pieces of DNA). This is because the DNA sequence from

the sequencing results is complicated to get whole pieces of DNA, fragments of DNA scattered

in the environment, or the ability of sequencing technology still needs to be improved. After all,

the entire DNA is very long. We use the OLC model approach to reconstruct the DNA sequence,

which is explained as follows:

1. Overlap (O): Search for the same sequence among fragments.

2. Layout (L): Uses alignment strategy to sort fragments based on high overlap values.

3. Consensus (C): Calculates the consensus sequences from the layout phase.

An example of the OLC method can be seen in Fig. 2, which illustrates the whole sequence:

(A) fragments based on the sequence, (B) overlap search stage, (C) layout stage, and (D) until

the fragments are reorganized into consensus.

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

136

Fig. 1 Computational model diagram of metaheuristic algorithm

on DNA sequence assembly problem

Fig. 2 An illustration of DNA sequence assembly method

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

137

Generally, the steps performed in this study can be divided into: (i) data input; (ii) buffer table

initialization; (iii) population-based metaheuristic implementation; (iv) DNA assembly; and

(v) DNA reassembly to generate contigs. The explanation of each step is as follows.

Input DNA reads

In the computational model created, before users can use the application, they are prompted to

enter DNA read files or pieces of DNA that they want to combine in “.fasta” format.

The program will process the following data after the DNA reads are successfully entered.

seq <- read_fasta(“data.fasta”)

reads <- to_data_frame(seq)

Buffer table

The buffer table is used to store the calculated overlap value. The buffer table is a n×n

dimensional table (n is the number of fragments), initially initiated with a value of -1 (Fig. 3);

if ever accessed, the value in specific rows and columns changes to the overlap value that the

program has calculated. For example, f1 with f3 will be calculated for the overlap value.

The value in the buffer table at coordinates (1, 3) (assume the index starts from 1) will be

changed to the overlap value obtained. Fig. 3 illustrates the buffer table value that is updated to

the value of 8 obtained from the search result of the overlap value of f1 with f3.

Fig. 3 An example of an updated buffer table

If in another combination f1 is again adjacent to f3, the program only needs to retrieve the value

from the buffer table at coordinates (1, 3) instead of recalculating the overlap value. This is

quite effective, considering the number of fragments and combinations in the metaheuristic

algorithm and the length of the fragments to be compared. When the algorithm is run, a value

at a particular coordinate in the buffer table will likely be retrieved multiple times.

overlap_table <- matrix(-1, nrow(reads), nrow(reads))

Population-based metaheuristic

At this stage, the initial value of the population of the metaheuristic algorithm is initialized.

The population in the metaheuristic represents a group of n different individuals, where the user

can set the number of populations (n). The individuals in the metaheuristic represent

a combination of fragment sequences that can form many/one contig.

In Fig. 4, we can see the representation of the individual in the population of the metaheuristic

algorithm are continuous values, which later will be converted to permutation of a fragment.

One way to convert continuous values in the matrix into a permutation form is to use the

SPV rule. The way the SPV rule works is to take the smallest value from a list (i), then store it

as the smallest value, then the following order is the second smallest value in the list, and so on.

The SPV rule uses an example of a value created earlier, as shown in Fig. 4.

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

138

Fig. 4 SPV rule representation of the first index of X

The objective function of this metaheuristics algorithm is as follows.

𝑡𝑜𝑡𝑎𝑙𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑛
= ∑ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑣𝑎𝑙𝑢𝑒𝑗,𝑗+1

𝑛−1
𝑗=0 . (1)

The overlap value function is calculated based on the number of characters that overlap the

suffix of one fragment with the prefix of the following fragment. The combination of all overlap

values in the order of the fragments is called the total overlap. This can be expressed as follows.

𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑣𝑎𝑙𝑢𝑒𝑖,𝑖+1 = 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑖 + 1). (2)

The scoring mechanism is performed using the Knuth-Morris-Pratt (KMP) algorithm [24].

As for the pseudocode to run scoring using the KMP algorithm, it is as follows:

FUNCTION kmp_table(s):

table <- empty array of size s.length

j <- 0

FOR i <- 1 TO s.length - 1:

WHILE j > 0 AND s[j] != s[i]:

j <- table[j – 1]

IF s[j] == s[i]:

j <- j + 1

table[i] <- j

END FOR

RETURN table

END FUNCTION

FUNCTION overlap_kmp(s1, s2):

IF s2 is a substring of s1 THEN

RETURN length of s2

ELSE IF s1 is a substring of s2 THEN

RETURN length of s1

ELSE

max_overlap <- minimum of length of s1 and length of s2

IF max_overlap == 0 THEN

RETURN 0

END IF

s <- concatenate s2, '#', s1

table <- kmp_table(s)

overlap_value <- last element of table

IF overlap_value >= max_overlap THEN

RETURN max_overlap

ELSE

Check for prefix/suffix overlap

FOR i <- overlap_value DOWNTO 1:

IF s2 ends with first i characters of s1 OR s1 ends with first i

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

139

characters of s2 THEN

RETURN i

END IF

END FOR

RETURN 0

END IF

END IF

END FUNCTION

The above pseudocode is used to compare the suffix of the first string (s1) with the second string

(s2) prefix. To do this, it considers the possibility of the first string being inside the second string

and vice versa; if this happens, the algorithm will immediately return the value of the shortest

string. If this does not occur, it will check for overlapping using the KMP algorithm in the

pseudocode snippet above.

FUNCTION find_total_overlap(X):

overlap <- 0

FOR i <- 1 TO (length of X) - 1:

left_index <- find_indices_of_i_in_X(X, i)

right_index <- find_indices_of_i_plus_1_in_X(X, i)

IF overlap_table[left_index, right_index] == -1 THEN

overlap_table[left_index, right_index] <-

overlap_kmp(reads[left_index,], reads[right_index,])

END IF

overlap <- overlap + overlap_table[left_index, right_index]

END FOR

RETURN overlap

END FUNCTION

The pseudocode above shows the find total_overlap function, which aims to find the total

overlap value of the sequence permutations stored in an individual. The input parameters given

to this function are the list of fragments and the sequence permutation of these fragments.

It is repeated for each pair in the fragment sequence; if the data is already in the buffer table,

then the data is retrieved directly, but if it is not yet in the buffer table, then the calculation is

performed using the overlap_kmp function explained earlier. The results of all calculations are

summed and stored in the result variable and returned by the function, which represents the

individual’s score.

The algorithm enters the iteration process after the initial population is formed and the best

individual is obtained from the initial population. At each iteration, the solution is evaluated

based on the objective function. Next, the update process is applied according to each algorithm.

These steps are repeated for a predetermined number of iterations or until a satisfactory solution

is found. Fig. 5 illustrates the general process of the population-based metaheuristic algorithm.

INPUT: fungsi tujuan f(x)

OUTPUT: solusi terbaik

Bangkitkan populasi awal P0

Evaluasi setiap kandidat solusi pada P0

WHILE t < maxIteration

Perbarui posisi setiap kandidat solusi P0

evaluasi kandidat solusi baru

t = t + 1

END WHILE

Fig. 5 Metaheuristic population-based algorithm template [38]

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

140

Assemble DNA
After the entire set of metaheuristic algorithm processes has been run, a permutation of the

DNA fragment sequence is obtained, and this sequence is then used as the basis for assembling

the fragments into a whole. The assembly process shown in Fig. 6 illustrates how the fragments

are recombined in the assembly process. However, in this process, the overlap between two

fragments must exceed the threshold; this threshold is the minimum percentage of overlap value

needed for the fragments to be recombined.

Fig. 6 DNA assembly process

Suppose two fragments are to be merged, for example, fragA with fragB. In that case, for the

two fragments to be merged, the overlap value between the two fragments must be more than

the threshold×min(len(fragA, fragB)) or the threshold value multiplied by the length of the

shortest fragment between the two fragments. This is done to prevent miss assembly or

a condition where the merged fragments are not their partners.

If the two fragments do not match, the mismatched fragment will be added to the second, third,

etc. contig list. This also causes the contig produced by the assembly process to consist of one

or more contig sequences. The pseudocode to illustrate the DNA assembly process is as follows:

FUNCTION assemble_dna(strings):

assembled_overlap_count <- 0

IF length of strings == 0 THEN

RETURN empty string

ELSE IF length of strings == 1 THEN

RETURN strings[1]

ELSE

result <- array containing the first element of strings

FOR i <- 2 TO length of strings:

max_overlap <- 0

max_index <- -1

FOR j <- 1 TO length of result:

overlap <- find_overlap(result[j], strings[i])

IF overlap > max_overlap THEN

max_overlap <- overlap

max_index <- j

END IF

END FOR

IF max_overlap < min(length of strings[i], length of

result[max_index]) * threshold THEN

result <- concatenate result, strings[i]

ELSE

assembled_overlap_count <- assembled_overlap_count +

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

141

max_overlap

IF length of result[max_index] == max_overlap THEN

result[max_index] <- strings[i]

ELSE

result[max_index] <- concatenate result[max_index], substring

of strings[i] from index (max_overlap + 1) to the end

END IF

END IF

END FOR

RETURN [result, assembled_overlap_count]

END IF

END FUNCTION

Reassemble DNA
Because the metaheuristic algorithm is an optimization algorithm, likely, the permutation found

is not the global best. Still, the local best, and there is a possibility that fragments that should

be close together are separated. Therefore, the contig results of the DNA assembly process are

re-entered into the model of the metaheuristic algorithm as new input data. Reassembling DNA

is performed by rerunning the process from stage 2 to stage 4. This process is repeated until the

contig can no longer be split. The characteristics of contigs that can no longer be split are contigs

that have gone through the reassembly process, but the length of the contig has not decreased,

indicating that there are no pairs that match the predetermined threshold. After this process

is complete, the program will obtain contigs that are considered optimal enough. The final

contig obtained is output as the result of the program.

Datasets
This study used data from previous studies [2, 17, 18, 32, 43]. We downloaded data from

NCBI [49] based on the ID of the DNA sequences to be used for experiments. The DNA

sequences used in this study have the NCBI IDs M15421, NC001453, and X60189.

The downloaded data will then be cut as in the DNA sequencing process. Details of the data

sets are shown in Table 1. Each dataset combines three sequences downloaded from NCBI and

then slices them to simulate DNA sequencing. We use different coverage combinations to

determine the performance of each algorithm. Length is the length of each read, read numbers

are the number of reads (fragments) in the data set, and coverage is the number of times a given

nucleotide is sequenced or “covered” by reads.

Table 1. Details of the datasets used

Dataset Length Read numbers Coverage

500_7 500 413 7

750_7 750 275 7

500_15 500 886 15

750_15 750 590 15

500_25 500 1477 25

750_25 750 984 25

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

142

Experimental setup

The program in this experiment was written using R language version 4.2.1 and R Studio

version 2023.06.1. The packages used in the research are as follows:

1. microseq [41]: used to read “.fasta” files.

2. dplyr [45]: used to process data frame in R.

3. Biostrings [35]: used to convert frame data containing sequences to “.fasta” files.

4. Rcpp [11]: used to run C++ code in the R environment, in this study, the KMP algorithm

is written in C++ so that the KMP process runs faster.

The experimental scenario was performed by running four population-based metaheuristic

algorithms on the six datasets shown in Table 1. To optimise our metaheuristic approach for

DNA assembly, we employed a grid search strategy. This involved evaluating a range of

candidate parameter values and selecting the combination that yielded the most favourable

outcomes. Specifically, we prioritised settings that minimised the number of contigs

(fragmented DNA segments), reduced computational time, and maximised the number

of overlaps (alignments between fragments). The best parameters obtained from the grid search

used for each algorithm are shown in Table 2. The experiments were performed by running

each algorithm for 1000 iterations, and the population was 25.

Table 2. Used parameters in the experiment

Algorithm Parameters combination

HBA 𝑏𝑒𝑡𝑎 = 2, 𝐶 = 1.5

LFD 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 20

AVOA 𝑝1 = 0.4, 𝑝2 = 0.6, 𝑝3 = 0.4

PSO 𝑉𝑚𝑎𝑥 = 2, 𝑐𝑖 = 2, 𝑐𝑔 = 2, 𝑤 = 0.2

Results and discussion
Below are the results and discussion of each experiment performed. Each experiment performed

is compared based on the number of contigs, the number of overlaps, and the computation time.

The lower the number of contigs produced, the better the algorithm because it can combine

each fragment with a given threshold. The greater the number of overlaps, the better the value

of the objective function, indicating that the algorithm can find a better solution.

From the results obtained, AVOA has the highest total overlap in almost all datasets at the first

run of the algorithm. However, if, based on the number of contigs, HBA is better at producing

contigs, it can create a small number of contigs at the last iteration. Based on computational

time, AVOA has the fastest computational time in all dataset scenarios on the first run, followed

by PSO.

Table 3 compares the number of overlaps from the first and the last iteration. The first iteration

is a large computational iteration because there is still a lot of data. The last iteration is the

iteration where the contig is no longer divisible. Overall, AVOA can produce the most overlap

in the first iteration, followed by PSO. It can also be seen that the longer the reads of the dataset

and the greater the dataset coverage, both AVOA and PSO can produce good overlap in the

first and the last iteration. HBA also showed good performance in terms of the number of

overlaps in the 500 length with 7 coverage and 750 length and 25 coverage. It can be seen where

the four algorithms can produce high overlap on a dataset with a read length of 750 and coverage

of 25.

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

143

Table 3. Comparison of the number of overlaps from the first and last iteration

Iteration Algorithm
Dataset

500_7 750_7 500_15 750_15 500_25 750_25

First

HBA 7743 11993 10894 17817 11221 22451

LFD 7666 15211 12293 20764 21241 22192

AVOA 14551 22573 25777 41322 17536 49952

PSO 16227 24660 11039 31473 16493 25963

Last

HBA 386 1457 414 375 980 504

LFD 360 1455 420 379 981 363

AVOA 362 1578 416 380 847 364

PSO 364 1458 956 377 981 502

The AVOA algorithm also shows superior performance in terms of total overlap at the first

iteration, as shown in Fig. 7A. However, at the last iteration (Fig. 7B), PSO achieves a higher

total overlap in most datasets. A higher total overlap indicates that the algorithm can perform

optimization well since the objective function, in this case, is to maximize the amount of

overlap. In addition to AVOA, PSO achieves high total overlap in some data.

A) B)

Fig. 7 Comparison of overlap numbers in the first iteration (A)

and the last iteration (B) of all algorithms

Table 4 compares the number of contigs from both the first and last iteration. It can be seen that

HBA can produce fewer contigs, especially on datasets with a read length of 750 and a coverage

of 15, with six contigs. It also can be seen that the AVOA algorithm excels on the first iteration

but performs poorly at the last iteration in terms of the number of contigs.

Based on the number of contigs, AVOA and PSO can achieve the lower number of contigs at

the first iteration (Fig. 8A). Meanwhile, HBA has the lowest number of contigs in some data

sets at the last iteration (Fig. 8B). The low number of contigs indicates that the algorithm can

sequence DNA sequences correctly, resulting in DNA sequences with overlaps that exceed

the threshold.

0

10000

20000

30000

40000

50000

60000

Overlap numbers in first iteration

HBA LFD AVOA PSO

0

500

1000

1500

2000

Overlap numbers in last iteration

HBA LFD AVOA PSO

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

144

Table 4. Comparison of the number of contigs from the first and last iteration

Iteration Algorithm
Dataset

500_7 750_7 500_15 750_15 500_25 750_25

First

HBA 86 61 83 62 89 59

LFD 80 58 85 62 92 66

AVOA 70 45 77 52 82 58

PSO 75 46 84 55 93 52

Last

HBA 15 11 12 6 13 10

LFD 16 10 13 10 13 8

AVOA 15 12 14 9 14 9

PSO 17 11 18 8 13 10

A) B)

Fig. 8 Comparison of contig numbers in the first iteration (A) and last iteration (B)

One of the standout results from the data is the consistently lower computation time of the

AVOA algorithm across different datasets, as shown in Fig. 9. The total computation time data

is shown in Table 5. This indicates that AVOA is more efficient regarding computational

resources than the other three algorithms. Computational efficiency is important in DNA

sequence assembly, which has a vast solution space.

Fig. 9 Comparison of computational time (s) for all algorithms

0

20

40

60

80

100

Contig numbers in first iteration

HBA LFD AVOA PSO

0

5

10

15

20

Contig numbers in last iteration

HBA LFD AVOA PSO

0

500

1000

1500

2000

500_7 750_7 500_15 750_15 500_25 750_25

Computational time (s)

HBA LFD AVOA PSO

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

145

Table 5. Comparison of total computational time

Algorithm
Dataset

500_7 750_7 500_15 750_15 500_25 750_25

HBA 347.26 244.57 707.89 450.51 1371.9 811.24

LFD 640.89 425.98 991.49 743.73 1832.41 1266.71

AVOA 141.51 89.8 340.08 191.79 613.29 333.9

PSO 195.85 133.15 389.56 252.14 771.48 435.13

Overall, AVOA has the best results where it can produce the most total overlaps and also has

the best efficiency because it has a faster computation time than other algorithms. Besides

AVOA, PSO also produces total overlap and computation time that are not far from AVOA.

However, based on the number of contigs, HBA is able to produce the least number of contigs,

especially on data sets of length 750.

Conclusion
In this study, we investigate and compare the performance of population-based metaheuristic

algorithms in solving the problem of DNA sequence assembly. DNA sequence assembly is

an essential and complex computational challenge in genomics, which aims to combine short

pieces of DNA sequences into longer ones. The experiments conducted on benchmark data

showed that AVOA performed best by producing the highest number of overlaps,

namely 49,952, on a data set with a length of 750 and a coverage of 25. In addition, AVOA was

the most efficient in terms of computational time compared to other algorithms on all datasets

tested. While PSO had almost comparable results to AVOA in overlap and time efficiency,

HBA generated the least number of contigs, especially on the 750 length and 15 coverage

datasets with only six contigs. To push the boundaries of DNA assembly, we can explore

hybridizing metaheuristics with complementary methods, incorporating biological knowledge

into the algorithms, and parallelization for large datasets. The big data approach with

parallelization is also suitable for this research. All of the approaches should be followed by

real-world validation. The use of this approach can be utilized for larger datasets in order to

solve real-world problems such as diet analysis, whole genome sequencing, and metagenomic

sequencing.

References
1. Abdollahzadeh B., F. S. Gharehchopogh, S. Mirjalili (2021). African Vultures Optimization

Algorithm: A New Nature-inspired Metaheuristic Algorithm for Global Optimization

Problems, Computers & Industrial Engineering, 158, 107408.

2. Ali A. B., G. Luque, E. Alba (2020). An Efficient Discrete PSO Coupled with a Fast Local

Search Heuristic for the DNA Fragment Assembly Problem, Information Sciences, 512,

880-908.

3. Alkan C., S. Sajjadian, E. E. Eichler (2011). Limitations of Next-generation Genome

Sequence Assembly, Nature Methods, 8(1), 61-65.

4. Bankevich A., S. Nurk, D. Antipov, A. A. Gurevich, et al. (2012). SPAdes: A New Genome

Assembly Algorithm and Its Applications to Single-cell Sequencing, Journal of

Computational Biology, 19(5), 455-477.

5. Blum C., A. Roli (2003). Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison, ACM Computing Surveys (CSUR), 35(3), 268-308.

6. Boyd D., K. Crawford (2012). Critical Questions for Big Data: Provocations for a Cultural,

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

146

Technological, and Scholarly Phenomenon, Information, Communication & Society, 15(5),

662-679.

7. Bucur D. (2017). A Stochastic de novo Assembly Algorithm for Viral-sized Genomes

Obtains Correct Genomes and Builds Consensus, Information Sciences, 420, 184-199.

8. Deb K. (2011). Multi-objective Optimisation Using Evolutionary Algorithms: An

Introduction, In Multi-objective Evolutionary Optimisation for Product Design and

Manufacturing, 3-34, London, Springer London.

9. Dohm J. C., C. Lottaz, T. Borodina, H. Himmelbauer (2007). SHARCGS, a Fast and Highly

Accurate Short-read Assembly Algorithm for de novo Genomic Sequencing, Genome

Research, 17(11), 1697-1706.

10. Dorigo M., V. Maniezzo, A. Colorni (1996). Ant System: Optimization by a Colony of

Cooperating Agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 26(1), 29-41.

11. Eddelbuettel D., R. François (2011). Rcpp: Seamless R and C++ Integration, Journal of

Statistical Software, 40, 1-18.

12. Gheraibia Y., A. Moussaoui, S. Kabir, S. Mazouzi (2016). Pe-DFA: Penguins Search

Optimisation Algorithm for DNA Fragment Assembly, International Journal of Applied

Metaheuristic Computing, 7(2), 58-70.

13. Glover F. (1986). Future Paths for Integer Programming and Links to Artificial Intelligence,

Computers & Operations Research, 13(5), 533-549.

14. Hashim F. A., E. H. Houssein, K. Hussain, M. S. Mabrouk, et al. (2022). Honey Badger

Algorithm: New Metaheuristic Algorithm for Solving Optimization Problems,

Mathematics and Computers in Simulation, 192, 84-110.

15. Holland J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press,

Cambridge, Massachusetts.

16. Houssein E. H., M. R. Saad, F. A. Hashim, H. Shaban, et al. (2020). Lévy Flight

Distribution: A New Metaheuristic Algorithm for Solving Engineering Optimization

Problems, Engineering Applications of Artificial Intelligence, 94, 103731.

17. Huang K. W., J. L. Chen, C. S. Yang (2012). A Hybrid PSO-based Algorithm for Solving

DNA Fragment Assembly Problem, Third International Conference on Innovations in Bio-

inspired Computing and Applications, IEEE, 223-228.

18. Huang K. W., J. L. Chen, C. S. Yang, C. W. Tsai (2015). A Memetic Particle Swarm

Optimization Algorithm for Solving the DNA Fragment Assembly Problem, Neural

Computing and Applications, 26, 495-506.

19. Hughes J. A., S. Houghten, D. Ashlock (2016). Restarting and Recentering Genetic

Algorithm Variations for DNA Fragment Assembly: The Necessity of a Multi-strategy

Approach, Biosystems, 150, 35-45.

20. Indumathy R., S. Uma Maheswari, G. Subashini (2015). Nature-inspired Novel Cuckoo

Search Algorithm for Genome Sequence Assembly, Sadhana, 40(1), 1-14.

21. Karaboga D., B. Akay (2009). A Comparative Study of Artificial Bee Colony Algorithm,

Applied Mathematics and Computation, 214(1), 108-132.

22. Kennedy J., R. Eberhart (1995). Particle Swarm Optimization, Proceedings of the

International Conference on Neural Networks (ICNN’95), 4, 1942-1948.

23. Kirkpatrick S., C. D. Gelatt Jr., M. P. Vecchi (1983). Optimization by Simulated Annealing,

Science, 220(4598), 671-680.

24. Knuth D. E., J. H. Morris Jr., V. R. Pratt (1977). Fast Pattern Matching in Strings, SIAM

Journal on Computing, 6(2), 323-350.

25. Kochenderfer M. J., T. A. Wheeler (2019). Algorithms for Optimization, MIT Press,

Cambridge, Massachusetts.

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

147

26. Kunin V., A. Copeland, A. Lapidus, K. Mavromatis, et al. (2008). A Bioinformatician’s

Guide to Metagenomics, Microbiology and Molecular Biology Reviews, 72(4), 557-578.

27. Lai B., R. Ding, Y. Li, L. Duan, et al. (2012). A de novo Metagenomic Assembly Program

for Shotgun DNA Reads, Bioinformatics, 28(11), 1455-1462.

28. Liu X., P. R. Pande, H. Meyerhenke, D. A. Bader (2012). PASQUAL: Parallel Techniques

for Next Generation Genome Sequence Assembly, IEEE Transactions on Parallel and

Distributed Systems, 24(5), 977-986.

29. Mallen-Fullerton G. M., G. Fernandez-Anaya (2013). DNA Fragment Assembly Using

Optimization, IEEE Congress on Evolutionary Computation, 1570–1577.

30. Mardis E. R. (2008). Next-generation DNA Sequencing Methods, Annual Review of

Genomics and Human Genetics, 9(1), 387-402.

31. Meksangsouy P., N. Chaiyaratana (2003). DNA Fragment Assembly Using an Ant Colony

System Algorithm, Congress on Evolutionary Computation, 3, 1756-1763.

32. Minetti G., E. Alba (2010). Metaheuristic Assemblers of DNA Strands: Noiseless and Noisy

Cases, IEEE Congress on Evolutionary Computation, 1-8.

33. Nagarajan N., M. Pop (2013). Sequence Assembly Demystified, Nature Reviews Genetics,

14(3), 157-167.

34. Nebro A. J., G. Luque, F. Luna, E. Alba (2008). DNA Fragment Assembly Using a Grid-

based Genetic Algorithm, Computers & Operations Research, 35(9), 2776-2790.

35. Pagès H., P. Aboyoun, R. Gentleman, S. DebRoy (2022). Biostrings: Efficient

Manipulation of Biological Strings, http://bioconductor.riken.jp/packages/3.14/bioc/

manuals/Biostrings/man/Biostrings.pdf.

36. Pevzner P. A., H. Tang, M. S. Waterman (2001). An Eulerian Path Approach to DNA

Fragment Assembly, Proceedings of the National Academy of Sciences, 98(17), 9748-9753.

37. Rajagopal I., U. M. Sankareswaran (2015). An Adaptive Particle Swarm Optimization

Algorithm for Solving DNA Fragment Assembly Problem, Current Bioinformatics, 10(1),

97-105.

38. Riza L. S., E. P. Nugroho (2018). MetaheuristicOpt: An R Package for Optimisation Based

on Meta-Heuristics Algorithms, Pertanika Journal of Science & Technology, 26(3).

39. Sanger F., S. Nicklen, A. R. Coulson (1977). DNA Sequencing with Chain-terminating

Inhibitors, Proceedings of the National Academy of Sciences, 74(12), 5463-5467.

40. Simpson J. T., K. Wong, S. D. Jackman, J. E. Schein, et al. (2009). ABySS: A Parallel

Assembler for Short Read Sequence Data, Genome Research, 19(6), 1117-1123.

41. Snipen L., K. H. Liland (2018). Microseq: Basic Biological Sequence Handling, R package

version, 2(5), https://CRAN.R-project.org/package=microseq.

42. Storn R., K. Price (1997). Differential Evolution – A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces, Journal of Global Optimization, 11,

341-359.

43. Verma R. S. (2012). DSAPSO: DNA Sequence Assembly using Continuous Particle Swarm

Optimization with Smallest Position Value Rule, First International Conference on Recent

Advances in Information Technology (RAIT), 410-415.

44. Warren R. L., G. G. Sutton, S. J. M. Jones, R. A. Holt (2007). Assembling Millions of Short

DNA Sequences Using SSAKE, Bioinformatics, 23(4), 500-501.

45. Wickham H., R. François, L. Henry, K. Müller, D. Vaughan (2023). Dplyr: A Grammar of

Data Manipulation, https://CRAN.R-project.org/package=dplyr.

46. Yang X. S., S. Deb (2009). Cuckoo Search via Lévy Flights, World Congress on Nature &

Biologically Inspired Computing (NaBIC), 210-214.

47. Zemali E., A. Boukra (2018). CS-ABC: A Cooperative System Based on Artificial Bee

Colony to Resolve the DNA Fragment Assembly Problem, International Journal of Data

Mining and Bioinformatics, 21(2), 145-168.

http://bioconductor.riken.jp/packages/3.14/bioc/%20manuals/Biostrings/man/Biostrings.pdf
http://bioconductor.riken.jp/packages/3.14/bioc/%20manuals/Biostrings/man/Biostrings.pdf

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

148

48. Zerbino D. R., E. Birney (2008). Velvet: Algorithms for de novo Short Read Assembly

using De Bruijn Graphs, Genome Research, 18(5), 821-829.

49. https://www.ncbi.nlm.nih.gov NCBI Database (Access date 19 September 2024).

Prof. Lala Septem Riza, Ph.D.

E-mail: lala.s.riza@upi.edu

Lala Septem Riza is a Professor and Computer Science Lecturer at the

Department of Computer Science Education, Universitas Pendidikan,

Indonesia. His research interests are in the fields of artificial

intelligence, machine learning, soft computing, and big data analysis.

Yudi Prasetyo, M.Sc.

E-mail: yudiprasetyo@upi.edu

Yudi Prasetyo graduated from the Department of Computer Science

Education, Universitas Pendidikan, Indonesia. His research interests are

in the fields of R programming language, DNA sequence assembly,

optimization, population-based metaheuristic, string matching.

Muhammad Iqbal Zain, M.Sc.

E-mail: iqbalzain99@upi.edu

Muhammad Iqbal Zain is a Fresh Graduate of Computer Science at

Indonesian Education University. He is interested in data science and

analytics, and has some research background and certifications in those

subjects.

https://www.ncbi.nlm.nih.gov/
mailto:lala.s.riza@upi.edu
mailto:yudiprasetyo@upi.edu
mailto:iqbalzain99@upi.edu

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

149

Herbert Siregar, M.Sc.

E-mail: herbert@upi.edu

Herbert Siregar is a Lecturer at the Department of Computer Science

Education, Universitas Pendidikan, Indonesia. His research interests are

in the fields of computer science, education, management, and

information systems.

Rani Megasari, M.Sc.

E-mail: megasari@upi.edu

Rani Megasari is a Lecturer at the Department of Computer Science

Education, Universitas Pendidikan, Indonesia. Her research interests are

in the fields of meeting scheduling negotiation and graph colouring.

Topik Hidayat, Ph.D.

E-mail: topikhidayat@upi.edu

Topik Hidayat is a Doctor and Lecturer at the Department of Biology

Education Universitas Pendidikan, Indonesia. His research interests are

in the fields of botany, molecular plant systematics, evolutionary

biology, environmental biotechnology, and biology education.

Diah Kusumawaty, Ph.D.

E-mail: diah.kusumawaty@upi.edu

Diah Kusumawaty is a Doctor and Lecturer at the Department of

Biology Education Universitas Pendidikan, Indonesia. Her research

interests are in the fields of genetics, molecular biology, disease and

immunity systems in fish.

mailto:herbert@upi.edu
mailto:megasari@upi.edu
mailto:topikhidayat@upi.edu
mailto:diah.kusumawaty@upi.edu

 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976

150

Miftahurrahma Rosyda, M.Sc.

E-mail: miftahurrahma.rosyda@tif.uad.ac.id

Miftahurrahma Rosyda is a Lecturer of Informatic Departement of

Universitas Ahmad Dahlan. Her research interests are in the fields of

bioinformatics and artificial intelligence.

© 2024 by the authors. Licensee Institute of Biophysics and Biomedical Engineering,

Bulgarian Academy of Sciences. This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

mailto:miftahurrahma.rosyda@tif.uad.ac.id
http://creativecommons.org/licenses/by/4.0/

