
 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976 
 

133 

Comparative Study of Population-based Metaheuristic 

Algorithms in Case Study of DNA Sequence Assembly 

 
Lala Septem Riza1*, Yudi Prasetyo1, Muhammad Iqbal Zain1, 

Herbert Siregar1, Rani Megasari1, Topik Hidayat2,  

Diah Kusumawaty2, Miftahurrahma Rosyda3 
 
1Department of Computer Science Education 

Universitas Pendidikan Indonesia 

Dr. Setiabudi Str. No. 229, Bandung 40154, Indonesia 

E-mails: lala.s.riza@upi.edu, yudiprasetyo@upi.edu, iqbalzain99@upi.edu, 

 herbert@upi.edu, megasari@upi.edu 

 
2Department of Biology Education 

Universitas Pendidikan Indonesia 

Dr. Setiabudi Str. No. 229, Bandung 40154, Indonesia 

E-mail: topikhidayat@upi.edu, diah.kusumawaty@upi.edu 

 
3Informatics Department 

Universitas Ahmad Dahlan 

Kapas 9 Str. Yogyakarta 55166, Indonesia 

E-mail: miftahurrahma.rosyda@tif.uad.ac.id 

 
*Corresponding author 

 

Received: December 22, 2023 Accepted: May 21, 2024 

  

 Published: September 30, 2024 

 
Abstract: Modern technology encounters difficulties performing DNA sequencing on long 

DNA sequences. Therefore, longer DNA sequences must be cut into smaller fragments. 

DNA sequence assembly is the process of combining several short genome sequences to create 

a longer DNA sequence. This study aims to compare the performance of several population-

based metaheuristic algorithms in handling the DNA sequence assembly problem based on 

computation time, number of contigs, and overlap value. The algorithms used in this study 

include the Honey Badger Algorithm (HBA), Lévy Flight Distribution (LFD), African Vultures 

Optimization Algorithm (AVOA), and Particle Swarm Optimization (PSO). Overall, AVOA has 

the best results where it can produce the most total overlap, where the most overlap is 49952 

in the dataset with length 750 and coverage 25. AVOA also has the best efficiency because it 

has a faster computation time than other algorithms in all datasets. Besides AVOA, PSO 

produces total overlap and computation time that is not far from AVOA. However, based on 

the number of contigs, HBA is able to create the least number of contigs, especially on datasets 

with a length of 750 and coverage of 15, with a total of 6 contigs. 

 

Keywords: DNA sequence assembly, Optimization, Population-based metaheuristic, 

R programming language, String matching. 

 

Introduction 
DNA sequencing is a fundamental technique in molecular biology that enables the 

determination of the exact sequence of nucleotides in a DNA molecule. It involves methods 

such as Sanger sequencing and next-generation sequencing (NGS), which have revolutionized 

the field of genomics and been instrumental in numerous scientific breakthroughs. 

Sanger sequencing, also known as chain termination sequencing, was the first method 

developed to sequence DNA and was the method used to sequence the first human genome [39]. 

On the other hand, NGS technologies, such as Illumina sequencing, have enabled high-speed 
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sequencing, drastically increasing the speed and volume of data generation [30]. 

 

With current technology, long DNA sequences are complex to sequence using an accurate 

sequencing process. For example, human DNA is 3.2 billion nucleotides long and cannot be 

read in one process. Because of this problem, long DNA sequences must be broken down into 

smaller fragments in a sequencing process called shotgun sequencing. This approach breaks 

large pieces of DNA into small enough pieces that machines can automatically process them. 

De novo genome assembly assembles a series of short genomic sequences, also called reads, 

into longer DNA sequences, called contigs. De novo genome assembly is used for new 

genomes, i.e., when there is no existing reference genome. There is an excellent need for 

de novo assembly because the number of fully sequenced species is minimal compared to the 

estimated number of organisms present [26]. 

 

Several factors complicate the assembly process. First, repetitive sequences in the genome can 

lead to ambiguity in assembly because it is difficult to determine where these repeats occur in 

the genome [3]. Second, sequencing errors can lead to errors in assembly [33]. Finally, the size 

and complexity of the assembled genome can also present difficulties. For example, making 

a human genome, which is approximately 3 billion base pairs in size, is a much more complex 

task than assembling a small bacterial genome. Despite these challenges, advances in 

sequencing technology and computational methods continue to improve the accuracy and 

efficiency of DNA sequence assembly. 

 

Traditionally, DNA sequence assembly has been implemented using three different approaches. 

The first is the Overlap-Layout-Consensus (OLC) method. Examples of tools using this method 

are PASQUAL [28] and MAP [27]. The OLC approach is based on finding overlaps between 

reads and constructing a graph where each vertex represents reads, and each edge represents 

the similarity of overlaps between reads. The graph is then traversed and transformed to extract 

long contigs. The second approach to implementing DNA sequence assembly is based on 

greedy algorithms such as SSAKE [44] and SHARCGS [9]. In this case, reads are progressively 

overlapped using seed reads to generate longer contigs. The third approach to implement 

DNA sequence assembly uses the De Bruijn graph (DBG) as a data structure, such as 

Velvet [48], SPAdes [4], and ABySS [40]. DBG-based DNA sequence assembly [36] cuts reads 

into consecutive sub-sequences of length k, called k-mers. A vertex represents each k-mer, and 

the edge between two vertices represents k – 1 overlaps. 

 

Optimization is a fundamental concept in computer science and mathematics that involves 

finding the best solution among a set of possible solutions to a given problem. The “best” 

solution is usually defined in terms of an objective function that measures the quality of 

the solution. Optimization problems can be found in various fields, including engineering, 

economics, data analysis, and bioinformatics [25]. Different optimization problems exist, such 

as linear and nonlinear, discrete and continuous, and deterministic and stochastic, each with its 

own characteristics and solution methods [6]. However, many real-world optimization 

problems are complex and difficult, often involving large solution spaces, multiple conflicting 

objectives, and dynamic environments [8]. 

 

Metaheuristic algorithms have been developed to address these challenges. Metaheuristics are 

problem-independent, high-level algorithmic frameworks that provide guidelines or strategies 

for developing heuristic optimization algorithms [5]. Metaheuristics are often used to solve 

complex optimization problems where traditional methods are neither effective nor efficient. 

Metaheuristics can be divided into two main categories: single-solution metaheuristics, such as 
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Simulated Annealing [23] and Tabu Search [13], and population-based metaheuristics, such as 

Genetic Algorithms (GA) [15], Particle Swarm Optimization [22], Ant Colony Optimization 

[10], and Differential Evolution [42]. These kinds of algorithms have been widely used in 

various fields due to their ability to effectively and efficiently explore the solution space and 

their flexibility to adapt to different problems [25, 46]. However, each algorithm has advantages 

and disadvantages, and the selection of an algorithm often depends on the specific 

characteristics of the issue at hand [2, 21]. 

 

Many metaheuristic algorithms that follow the OLC approach and aim to compute Hamiltonian 

paths on overlap graphs have been developed to tackle the DNA sequence assembly problem, 

in addition to methods based on graph theory. Several studies have been conducted to design 

and test GA-based DNA sequence assembly techniques [7, 19, 34]. The potential of algorithms 

based on swarm intelligence has also been explored, with examples including ant colony 

optimization [31], Particle Swarm Optimization (PSO) [18, 29, 37, 43], Bee Algorithms [47], 

Cuckoo Search Algorithm [20], and Penguin Search Optimization Algorithm [12]. 

 

This study aims to compare the performance of population-based metaheuristic algorithms on 

the DNA sequence assembly problem. The algorithms used are PSO [22], Honey Badger 

Algorithm (HBA) [14], Lévy Flight Distribution (LFD) [16] and African Vultures Optimization 

Algorithm (AVOA) [1]. We explore the potential of recently developed metaheuristic 

algorithms. While PSO has demonstrably addressed DNA assembly challenges [18], we aim to 

evaluate some novel approaches that hold promise for surpassing PSO’s performance. 

LFD [16], HBA [14], and AVOA [1] all possess intriguing characteristics that make them well-

suited for this task. These algorithms have shown advancements in various aspects compared 

to PSO in tackling complex problems, suggesting their potential to yield superior results in 

DNA assembly. This study proposes a computational model to solve the DNA sequence 

assembly problem and compares the performance of each algorithm based on computation time, 

number of contigs, and overlap value. 

 

Materials and methods 

Computational model 
The computational model is shown in Fig. 1. The model created in this study is used to 

reconstruct the DNA sequence (short pieces of DNA). This is because the DNA sequence from 

the sequencing results is complicated to get whole pieces of DNA, fragments of DNA scattered 

in the environment, or the ability of sequencing technology still needs to be improved. After all, 

the entire DNA is very long. We use the OLC model approach to reconstruct the DNA sequence, 

which is explained as follows: 
 

1. Overlap (O): Search for the same sequence among fragments. 

2. Layout (L): Uses alignment strategy to sort fragments based on high overlap values. 

3. Consensus (C): Calculates the consensus sequences from the layout phase. 

 

An example of the OLC method can be seen in Fig. 2, which illustrates the whole sequence: 

(A) fragments based on the sequence, (B) overlap search stage, (C) layout stage, and (D) until 

the fragments are reorganized into consensus. 
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Fig. 1 Computational model diagram of metaheuristic algorithm  

on DNA sequence assembly problem 

 

 

Fig. 2 An illustration of DNA sequence assembly method 
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Generally, the steps performed in this study can be divided into: (i) data input; (ii) buffer table 

initialization; (iii) population-based metaheuristic implementation; (iv) DNA assembly; and 

(v) DNA reassembly to generate contigs. The explanation of each step is as follows. 

 

Input DNA reads 

In the computational model created, before users can use the application, they are prompted to 

enter DNA read files or pieces of DNA that they want to combine in “.fasta” format. 

The program will process the following data after the DNA reads are successfully entered. 

 

seq <- read_fasta(“data.fasta”) 

reads <- to_data_frame(seq) 

 

Buffer table 

The buffer table is used to store the calculated overlap value. The buffer table is a n×n 

dimensional table (n  is the number of fragments), initially initiated with a value of -1 (Fig. 3); 

if ever accessed, the value in specific rows and columns changes to the overlap value that the 

program has calculated. For example, f1 with f3 will be calculated for the overlap value. 

The value in the buffer table at coordinates (1, 3) (assume the index starts from 1) will be 

changed to the overlap value obtained. Fig. 3 illustrates the buffer table value that is updated to 

the value of 8 obtained from the search result of the overlap value of f1 with f3. 

 

 

Fig. 3 An example of an updated buffer table 

 

If in another combination f1 is again adjacent to f3, the program only needs to retrieve the value 

from the buffer table at coordinates (1, 3) instead of recalculating the overlap value. This is 

quite effective, considering the number of fragments and combinations in the metaheuristic 

algorithm and the length of the fragments to be compared. When the algorithm is run, a value 

at a particular coordinate in the buffer table will likely be retrieved multiple times. 

 

overlap_table <- matrix(-1, nrow(reads), nrow(reads)) 

 

Population-based metaheuristic 

At this stage, the initial value of the population of the metaheuristic algorithm is initialized. 

The population in the metaheuristic represents a group of n different individuals, where the user 

can set the number of populations (n). The individuals in the metaheuristic represent 

a combination of fragment sequences that can form many/one contig. 

 

In Fig. 4, we can see the representation of the individual in the population of the metaheuristic 

algorithm are continuous values, which later will be converted to permutation of a fragment. 

One way to convert continuous values in the matrix into a permutation form is to use the 

SPV rule. The way the SPV rule works is to take the smallest value from a list (i), then store it 

as the smallest value, then the following order is the second smallest value in the list, and so on. 

The SPV rule uses an example of a value created earlier, as shown in Fig. 4. 
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Fig. 4 SPV rule representation of the first index of X 

 

The objective function of this metaheuristics algorithm is as follows. 

 

𝑡𝑜𝑡𝑎𝑙𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑛
= ∑ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑣𝑎𝑙𝑢𝑒𝑗,𝑗+1

𝑛−1
𝑗=0 . (1) 

 

The overlap value function is calculated based on the number of characters that overlap the 

suffix of one fragment with the prefix of the following fragment. The combination of all overlap 

values in the order of the fragments is called the total overlap. This can be expressed as follows. 

 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑣𝑎𝑙𝑢𝑒𝑖,𝑖+1  = 𝑠𝑐𝑜𝑟𝑒(𝑖, 𝑖 + 1).  (2) 

 

The scoring mechanism is performed using the Knuth-Morris-Pratt (KMP) algorithm [24]. 

As for the pseudocode to run scoring using the KMP algorithm, it is as follows: 

 

FUNCTION kmp_table(s): 

table <- empty array of size s.length 

j <- 0 

FOR i <- 1 TO s.length - 1: 

WHILE j > 0 AND s[j] != s[i]: 

j <- table[j – 1] 

IF s[j] == s[i]: 

j <- j + 1 

table[i] <- j 

END FOR 

RETURN table 

END FUNCTION 

 

FUNCTION overlap_kmp(s1, s2): 

IF s2 is a substring of s1 THEN 

RETURN length of s2 

ELSE IF s1 is a substring of s2 THEN 

RETURN length of s1 

ELSE 

max_overlap <- minimum of length of s1 and length of s2 

IF max_overlap == 0 THEN 

RETURN 0 

END IF 

s <- concatenate s2, '#', s1 

table <- kmp_table(s) 

overlap_value <- last element of table 

IF overlap_value >= max_overlap THEN 

RETURN max_overlap 

ELSE 

# Check for prefix/suffix overlap 

FOR i <- overlap_value DOWNTO 1: 

IF s2 ends with first i characters of s1 OR s1 ends with first i 
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characters of s2 THEN 

RETURN i 

END IF 

END FOR 

RETURN 0 

END IF 

END IF 

END FUNCTION 

 

The above pseudocode is used to compare the suffix of the first string (s1) with the second string 

(s2) prefix. To do this, it considers the possibility of the first string being inside the second string 

and vice versa; if this happens, the algorithm will immediately return the value of the shortest 

string. If this does not occur, it will check for overlapping using the KMP algorithm in the 

pseudocode snippet above. 

 

FUNCTION find_total_overlap(X): 

overlap <- 0 

FOR i <- 1 TO (length of X) - 1: 

left_index <- find_indices_of_i_in_X(X, i) 

right_index <- find_indices_of_i_plus_1_in_X(X, i) 

IF overlap_table[left_index, right_index] == -1 THEN 

overlap_table[left_index, right_index] <- 

overlap_kmp(reads[left_index,], reads[right_index,]) 

END IF 

overlap <- overlap + overlap_table[left_index, right_index] 

END FOR 

RETURN overlap 

END FUNCTION 

 

The pseudocode above shows the find total_overlap function, which aims to find the total 

overlap value of the sequence permutations stored in an individual. The input parameters given 

to this function are the list of fragments and the sequence permutation of these fragments. 

It is repeated for each pair in the fragment sequence; if the data is already in the buffer table, 

then the data is retrieved directly, but if it is not yet in the buffer table, then the calculation is 

performed using the overlap_kmp function explained earlier. The results of all calculations are 

summed and stored in the result variable and returned by the function, which represents the 

individual’s score. 

 

The algorithm enters the iteration process after the initial population is formed and the best 

individual is obtained from the initial population. At each iteration, the solution is evaluated 

based on the objective function. Next, the update process is applied according to each algorithm. 

These steps are repeated for a predetermined number of iterations or until a satisfactory solution 

is found. Fig. 5 illustrates the general process of the population-based metaheuristic algorithm. 

 

INPUT: fungsi tujuan f(x) 

OUTPUT: solusi terbaik 

Bangkitkan populasi awal P0 

Evaluasi setiap kandidat solusi pada P0 

WHILE t < maxIteration 

Perbarui posisi setiap kandidat solusi P0 

evaluasi kandidat solusi baru 

t = t + 1 

END WHILE 

Fig. 5 Metaheuristic population-based algorithm template [38] 
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Assemble DNA 
After the entire set of metaheuristic algorithm processes has been run, a permutation of the 

DNA fragment sequence is obtained, and this sequence is then used as the basis for assembling 

the fragments into a whole. The assembly process shown in Fig. 6 illustrates how the fragments 

are recombined in the assembly process. However, in this process, the overlap between two 

fragments must exceed the threshold; this threshold is the minimum percentage of overlap value 

needed for the fragments to be recombined. 

 

 

Fig. 6 DNA assembly process 

 

Suppose two fragments are to be merged, for example, fragA with fragB. In that case, for the 

two fragments to be merged, the overlap value between the two fragments must be more than 

the threshold×min(len(fragA, fragB)) or the threshold value multiplied by the length of the 

shortest fragment between the two fragments. This is done to prevent miss assembly or 

a condition where the merged fragments are not their partners. 

 

If the two fragments do not match, the mismatched fragment will be added to the second, third, 

etc. contig list. This also causes the contig produced by the assembly process to consist of one 

or more contig sequences. The pseudocode to illustrate the DNA assembly process is as follows: 

 

FUNCTION assemble_dna(strings): 

assembled_overlap_count <- 0 

IF length of strings == 0 THEN 

RETURN empty string 

ELSE IF length of strings == 1 THEN 

RETURN strings[1] 

ELSE 

result <- array containing the first element of strings 
 

FOR i <- 2 TO length of strings: 

max_overlap <- 0 

max_index <- -1 
 

FOR j <- 1 TO length of result: 

overlap <- find_overlap(result[j], strings[i]) 

IF overlap > max_overlap THEN 

max_overlap <- overlap 

max_index <- j 

END IF 

END FOR 
 

IF max_overlap < min(length of strings[i], length of 

result[max_index]) * threshold THEN 

result <- concatenate result, strings[i] 

ELSE 

assembled_overlap_count <- assembled_overlap_count + 
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max_overlap 
 

IF length of result[max_index] == max_overlap THEN 

result[max_index] <- strings[i] 

ELSE 

result[max_index] <- concatenate result[max_index], substring 

of strings[i] from index (max_overlap + 1) to the end 

END IF 

END IF 

END FOR 
 

RETURN [result, assembled_overlap_count] 

END IF 

END FUNCTION 

 

Reassemble DNA 
Because the metaheuristic algorithm is an optimization algorithm, likely, the permutation found 

is not the global best. Still, the local best, and there is a possibility that fragments that should 

be close together are separated. Therefore, the contig results of the DNA assembly process are 

re-entered into the model of the metaheuristic algorithm as new input data. Reassembling DNA 

is performed by rerunning the process from stage 2 to stage 4. This process is repeated until the 

contig can no longer be split. The characteristics of contigs that can no longer be split are contigs 

that have gone through the reassembly process, but the length of the contig has not decreased, 

indicating that there are no pairs that match the predetermined threshold. After this process 

is complete, the program will obtain contigs that are considered optimal enough. The final 

contig obtained is output as the result of the program. 

 

Datasets 
This study used data from previous studies [2, 17, 18, 32, 43]. We downloaded data from 

NCBI [49] based on the ID of the DNA sequences to be used for experiments. The DNA 

sequences used in this study have the NCBI IDs M15421, NC001453, and X60189. 

The downloaded data will then be cut as in the DNA sequencing process. Details of the data 

sets are shown in Table 1. Each dataset combines three sequences downloaded from NCBI and 

then slices them to simulate DNA sequencing. We use different coverage combinations to 

determine the performance of each algorithm. Length is the length of each read, read numbers 

are the number of reads (fragments) in the data set, and coverage is the number of times a given 

nucleotide is sequenced or “covered” by reads. 

 

Table 1. Details of the datasets used 

Dataset Length Read numbers Coverage 

500_7 500 413 7 

750_7 750 275 7 

500_15 500 886 15 

750_15 750 590 15 

500_25 500 1477 25 

750_25 750 984 25 
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Experimental setup 

The program in this experiment was written using R language version 4.2.1 and R Studio 

version 2023.06.1. The packages used in the research are as follows: 

1. microseq [41]: used to read “.fasta” files. 

2. dplyr [45]: used to process data frame in R. 

3. Biostrings [35]: used to convert frame data containing sequences to “.fasta” files. 

4. Rcpp [11]: used to run C++ code in the R environment, in this study, the KMP algorithm 

is written in C++ so that the KMP process runs faster. 

 

The experimental scenario was performed by running four population-based metaheuristic 

algorithms on the six datasets shown in Table 1. To optimise our metaheuristic approach for 

DNA assembly, we employed a grid search strategy. This involved evaluating a range of 

candidate parameter values and selecting the combination that yielded the most favourable 

outcomes. Specifically, we prioritised settings that minimised the number of contigs 

(fragmented DNA segments), reduced computational time, and maximised the number 

of overlaps (alignments between fragments). The best parameters obtained from the grid search 

used for each algorithm are shown in Table 2. The experiments were performed by running 

each algorithm for 1000 iterations, and the population was 25. 

 

Table 2. Used parameters in the experiment 

Algorithm Parameters combination 

HBA 𝑏𝑒𝑡𝑎 = 2, 𝐶 = 1.5 

LFD 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 20 

AVOA 𝑝1 = 0.4, 𝑝2 = 0.6, 𝑝3 = 0.4 

PSO 𝑉𝑚𝑎𝑥 = 2, 𝑐𝑖 = 2, 𝑐𝑔 = 2, 𝑤 = 0.2 

 

Results and discussion 
Below are the results and discussion of each experiment performed. Each experiment performed 

is compared based on the number of contigs, the number of overlaps, and the computation time. 

The lower the number of contigs produced, the better the algorithm because it can combine 

each fragment with a given threshold. The greater the number of overlaps, the better the value 

of the objective function, indicating that the algorithm can find a better solution. 

 

From the results obtained, AVOA has the highest total overlap in almost all datasets at the first 

run of the algorithm. However, if, based on the number of contigs, HBA is better at producing 

contigs, it can create a small number of contigs at the last iteration. Based on computational 

time, AVOA has the fastest computational time in all dataset scenarios on the first run, followed 

by PSO. 

 

Table 3 compares the number of overlaps from the first and the last iteration. The first iteration 

is a large computational iteration because there is still a lot of data. The last iteration is the 

iteration where the contig is no longer divisible. Overall, AVOA can produce the most overlap 

in the first iteration, followed by PSO. It can also be seen that the longer the reads of the dataset 

and the greater the dataset coverage, both AVOA and PSO can produce good overlap in the 

first and the last iteration. HBA also showed good performance in terms of the number of 

overlaps in the 500 length with 7 coverage and 750 length and 25 coverage. It can be seen where 

the four algorithms can produce high overlap on a dataset with a read length of 750 and coverage 

of 25. 



 INT. J. BIOAUTOMATION, 2024, 28(3), 133-150 doi: 10.7546/ijba.2024.28.3.000976 
 

143 

 

Table 3. Comparison of the number of overlaps from the first and last iteration 

Iteration Algorithm 
Dataset 

500_7 750_7 500_15 750_15 500_25 750_25 

First 

HBA 7743 11993 10894 17817 11221 22451 

LFD 7666 15211 12293 20764 21241 22192 

AVOA 14551 22573 25777 41322 17536 49952 

PSO 16227 24660 11039 31473 16493 25963 

Last 

HBA 386 1457 414 375 980 504 

LFD 360 1455 420 379 981 363 

AVOA 362 1578 416 380 847 364 

PSO 364 1458 956 377 981 502 

 

The AVOA algorithm also shows superior performance in terms of total overlap at the first 

iteration, as shown in Fig. 7A. However, at the last iteration (Fig. 7B), PSO achieves a higher 

total overlap in most datasets. A higher total overlap indicates that the algorithm can perform 

optimization well since the objective function, in this case, is to maximize the amount of 

overlap. In addition to AVOA, PSO achieves high total overlap in some data. 

 

  
A)      B) 

Fig. 7 Comparison of overlap numbers in the first iteration (A)  

and the last iteration (B) of all algorithms 

 

Table 4 compares the number of contigs from both the first and last iteration. It can be seen that 

HBA can produce fewer contigs, especially on datasets with a read length of 750 and a coverage 

of 15, with six contigs. It also can be seen that the AVOA algorithm excels on the first iteration 

but performs poorly at the last iteration in terms of the number of contigs. 

 

Based on the number of contigs, AVOA and PSO can achieve the lower number of contigs at 

the first iteration (Fig. 8A). Meanwhile, HBA has the lowest number of contigs in some data 

sets at the last iteration (Fig. 8B). The low number of contigs indicates that the algorithm can 

sequence DNA sequences correctly, resulting in DNA sequences with overlaps that exceed 

the threshold. 
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Table 4. Comparison of the number of contigs from the first and last iteration 

Iteration Algorithm 
Dataset 

500_7 750_7 500_15 750_15 500_25 750_25 

First 

HBA 86 61 83 62 89 59 

LFD 80 58 85 62 92 66 

AVOA 70 45 77 52 82 58 

PSO 75 46 84 55 93 52 

Last 

HBA 15 11 12 6 13 10 

LFD 16 10 13 10 13 8 

AVOA 15 12 14 9 14 9 

PSO 17 11 18 8 13 10 

 

  
A)      B) 

Fig. 8 Comparison of contig numbers in the first iteration (A) and last iteration (B) 

 

One of the standout results from the data is the consistently lower computation time of the 

AVOA algorithm across different datasets, as shown in Fig. 9. The total computation time data 

is shown in Table 5. This indicates that AVOA is more efficient regarding computational 

resources than the other three algorithms. Computational efficiency is important in DNA 

sequence assembly, which has a vast solution space. 

 

 

Fig. 9 Comparison of computational time (s) for all algorithms 
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Table 5. Comparison of total computational time 

Algorithm 
Dataset 

500_7 750_7 500_15 750_15 500_25 750_25 

HBA 347.26 244.57 707.89 450.51 1371.9 811.24 

LFD 640.89 425.98 991.49 743.73 1832.41 1266.71 

AVOA 141.51 89.8 340.08 191.79 613.29 333.9 

PSO 195.85 133.15 389.56 252.14 771.48 435.13 

 

Overall, AVOA has the best results where it can produce the most total overlaps and also has 

the best efficiency because it has a faster computation time than other algorithms. Besides 

AVOA, PSO also produces total overlap and computation time that are not far from AVOA. 

However, based on the number of contigs, HBA is able to produce the least number of contigs, 

especially on data sets of length 750. 

 

Conclusion 
In this study, we investigate and compare the performance of population-based metaheuristic 

algorithms in solving the problem of DNA sequence assembly. DNA sequence assembly is 

an essential and complex computational challenge in genomics, which aims to combine short 

pieces of DNA sequences into longer ones. The experiments conducted on benchmark data 

showed that AVOA performed best by producing the highest number of overlaps, 

namely 49,952, on a data set with a length of 750 and a coverage of 25. In addition, AVOA was 

the most efficient in terms of computational time compared to other algorithms on all datasets 

tested. While PSO had almost comparable results to AVOA in overlap and time efficiency, 

HBA generated the least number of contigs, especially on the 750 length and 15 coverage 

datasets with only six contigs. To push the boundaries of DNA assembly, we can explore 

hybridizing metaheuristics with complementary methods, incorporating biological knowledge 

into the algorithms, and parallelization for large datasets. The big data approach with 

parallelization is also suitable for this research. All of the approaches should be followed by 

real-world validation. The use of this approach can be utilized for larger datasets in order to 

solve real-world problems such as diet analysis, whole genome sequencing, and metagenomic 

sequencing. 
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