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Abstract: For both women and men over 60, liver cancer is the primary cause of  

cancer-related deaths. To help physicians to diagnose patients more accurately,  

computer-assisted imaging techniques have become increasingly important in recent years. 

Recent, deep Convolutional Neural Network (CNN) research has produced amazing 

improvements in image segmentation and classification. The same issue of diagnosing liver 

nodules in computed tomography (CT) scans is addressed in this research by introducing a 

novel Computer-Aided Detection (CAD) system that makes use of an Efficient Network 

(EfficientNet) image classification algorithm. Unlike CNN, which adjusts its network 

parameters arbitrarily, a set of predetermined scaling coefficients is used in the EfficientNet 

scaling technique to reliably scale the network’s breadth, depth, and resolution. Here the 

EfficientNet models are assessed by varying the input dimensions of the CT scans from  

The Liver Tumor Segmentation (LiTs) dataset. Finally, the performance evaluation shows that 

the input dimension 224×224 effectively classified the images and is superior to the other 

models evaluated with 0.991 AUC and 99.37% F1-Score, precision 99.44%, recall 99.30%, 

specificity 99.43%, and accuracy 99.36% for Kaggle datasets. 

 

Keywords: Deep learning, Convolution Neural Network, Computed tomography, Liver tumor 

classification, The Liver tumor segmentation. 

 

Introduction 
Among all cancers, liver cancer has one of the lowest five-year survival rates. Once exclusive to 

the elderly, modern lifestyle changes have made liver disorders, especially liver cancer, 

more common in younger people. One important strategy for reducing the fatality rate is early 

detection of liver nodules that may turn into cancer [8]. The increased detection rate of abdominal 

computerized tomography screening makes it a more effective means of reducing deaths from 

liver cancer. For more than 20 years, research has been conducted to create Computer-Aided 

Detection (CAD) systems that will aid radiologists in their search for malignant lesions in 

computed tomography (CT) scans. Convolution Neural Network (CNN) was made well-known 

as the answer to this problem by Yann [3]. The main problem with employing CNNs to detect 

liver tumors is the variety of purposes for nodule appearance and the volume of information found 

in CT scans. This technique has certain limitations, such as a high false-positive rate, variable 

sensitivity leading to missed diagnoses and undue anxiety in patients. 

 

Deep learning based systems [5] have made machine vision tasks more advanced and adaptable 

to assist in medical diagnosis. These networks are preferable because of the valuable and strong 

semantic properties they extract from the input material. A more effective image identification 

technique called the EfficientNet [17] has piqued the interest of scientists all over the world. 
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Prior to the introduction of EfficientNet, the domain of deep learning saw the creation of several 

important designs, especially in the area of CNNs, which transformed a number of applications, 

including object detection and envision categorization. This includes LeNet-5, the first CNN 

followed by Alex Net [2], VGG [4], Inception Net [16], Dense Net [12], Mobile Net [15], etc. 

Each of these designs pushed the envelope of what was possible and brought novel concepts 

and techniques that had a big impact on the deep learning community. Building on these 

developments, EfficientNet presented a methodical approach to scaling up CNNs in a more 

balanced fashion across many dimensions (depth, width, and resolution), which enhanced 

accuracy and efficiency even further. For a given level of accuracy, EfficientNets use less 

computing power than previous models like VGG, ResNet, or Inception. EfficientNets remains 

a competitive alternative to more recent architectures such as Vision Transformers (ViT) [9], 

particularly in situations where model efficiency is crucial. 

 

The majority of studies on the categorization of liver cancer have focused on models trained 

and tested on the publicly available Kaggle Dataset from The Liver Tumor Segmentation 

Benchmark. In their study, Kumar et al. [11] focused on the statistical texture descriptor’s 

capacity to automatically differentiate between benign and aggressive liver tumors, achieving 

96.7% accuracy, 97.3% sensitivity, and 96% specificity, respectively. Additionally, a hybrid 

hash-based CNN model [13] that extracts features from images using a hash function was 

developed. The model’s ability to categorize tumors into benign and malignant groups showed 

promise. Tumor classification was achieved using VGG-16 and a SegNet-based deep 

convolutional encode-decoder model [1]. The liver lesions were also classified into benign and 

malignant groups using a SegNet-based deep learning model. For the dataset, the Dice index, 

correlation coefficient, and Jaccard index were 0.96, 0.968, and 0.962, respectively. 

 

Chang et al. [6] suggested using a completely automated CAD system to identify hepatocecullar 

cancer. Support Vector Machine (SVM) yielded 98.7% accuracy compared to 98.4% accuracy 

for Artificial Neural Network (ANN). To extract liver tumors from CT scans, a Computer-

Aided Diagnosis approach was presented. Using Binary Logistic Regression Analysis based on 

Leave-One-Out Cross-Validation Strategy, the model yielded an accuracy of 81.2% [6]. 

A classification model for diagnosing liver cancers is suggested, utilizing pix2pix generation 

adaptive modules and Deep Lab V-3. The model performed better in classifying cancers [6]. 

Like this, a hybrid cascade segmentation network built on 2D and 3D neural network models 

was used to identify liver cancers using The Liver Tumor Segmentation (LiTs) CT image 

dataset. 130 CT images were subjected to histogram segmentation, and the model yielded 

encouraging results [19]. As was noted in the literature previously examined, an effective and 

trustworthy method for early detection of liver cancers is required. This will make it easier for 

doctors to promptly and correctly diagnose liver cancers. 

 

Materials and methods 
Advanced and versatile deep learning based tasks are now possible to aid in medical diagnosis. 

The LiTs dataset [21] was the source of the liver datasets, which are freely available to 

the public. The LiTs dataset was created to evaluate the effectiveness of automated 

segmentation algorithms and assist in the identification and demarcation of liver tumors 

(hepatocellular carcinoma) from CT scans. The collection consists of 131 3D CT scans from 

a variety of individuals. It shows a variety of liver disorders, sizes, and forms, including both 

healthy livers and those with tumors of different sizes and types. The NIfTI file format of the 

images is used, and they are sliced to separate the component DICOM before being 

preprocessed and saved as PNG files. The collection contains 14 124 pictures of both benign 

and malignant groups. Some exemplary cases from the database are shown in Fig. 1. 
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Fig. 1 Samples of CT DICOM images from LiTs dataset:  

liver slices without tumor (A), liver slices with tumor (B) 

 

Methodology of the proposed liver tumor classification 

Neural architecture search, which employs a controller network like Recurrent Neural Network 

(RNN) and sample network topologies from a search space with probability “p” is used to 

construct the EfficientNet models [20]. Using grid search, the six additional models are 

generated, ranging from EfficientNet B1 to EfficientNet B7, by scaling up the depth, width, 

and picture quality of their original model, which they named EfficientNet B0 [17]. 

EfficientNet V2, which surpasses EfficientNet in terms of training speed and 

parameter efficiency, adds new convolutional blocks like fused-MBConv [18]. The enhanced 

generalization capabilities of EfficientNet V2 over EfficientNet V1 can be attributed to 

modifications in data augmentation methodologies, model design, and training protocols. 

 

The proposed architecture for EfficientNet modelling for liver tumor classification is shown in 

Fig. 2. Here, liver tumor classification is implemented using the EfficientNet V2-S model, which 

only requires 3×3 filters and has a reduced expansion ratio than EfficientNet V1. The network 

begins with a stem made out of a conventional convolution and then moves through several 

phases that gradually boost the model’s capacity and complexity. Multiple fused-MBConv or 

MBConv blocks make up each step. The fused-MBConv blocks are depicted in Fig. 3. 

 

Tan and Le [18] combine depthwise and pointwise convolutions into a single convolution, 

in contrast to the original MBConv blocks. Depending on the stage and the EfficientNet V2 

variant, there are differences in the number of blocks and their configurations, such as 

expansion ratios, kernel sizes and filter counts. One or more fully connected layers are 

incorporated into the process at the output stage to classify the incoming data. The network’s 

final stages include the application of global average pooling, a dropout layer, and a fully linked 

layer that generates the final predictions. 
 

 

Fig. 2 An architecture of the proposed EfficientNet modelling for liver tumor classification 
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Fig. 3 MBConv and fused-MBConv layers of EfficientNet V2 

 

Experimental setup 
The models were implemented using Python 3 and the Keras library throughout. These were 

performed using a Google Colab pro+, which had a P100 GPU processor, 52 GB of RAM, 

and 2 TB of storage. Before being used, all the input pictures were resized and normalized using 

Kera’s Image DataGenerator class. The preprocessed images were loaded into the suggested 

deep learning model for binary classification. Each model was trained and confirmed for around 

50 epochs initially at 188 iterations per epoch using an Adam optimizer and the appropriate 

fit parameters. The batches had a size of 32. This research investigated how the architecture of 

deep learning was affected by different input image dimensions, namely 224×224, 229×229, 

and 256×256. 

 

The pseudocode for the proposed liver tumor classification using EfficientNet is depicted in 

Algorithm 1 (Fig. 4). 

 

 

Fig. 4 Algorithm 1: Pseudocode for the proposed liver tumor classification  

using EfficientNet 
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Results and discussion 
The model assessments make use of a variety of metrics. This study uses the confusion matrix 

and related metrics including accuracy, specificity, precision, recall and F1-score 

for evaluation. False Positive (FP), False Negative (FN), True Positive (TP), and True Negative 

(TN) are the four possible outcomes. A TP result indicates the presence of cancer in the patient 

since the result is classified as positive and the real value is positive. When a test indicates there 

is no malignancy when the patient actually has the condition being tested for is referred to a FN, 

and it suggests that the lab misread the result and it was positive. FP are results of cancer that 

are classified as positive but have a real value of negative when they do not actually exist. 

If the test yields a TN, it indicates that the subject is healthy or that the true value is negative. 

The following formulae, which range from Eq. (1) to Eq. (5), represent the performance 

measures.  

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 × 100;               (1) 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 × 100; (2) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 × 100; (3) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 × 100; (4) 

F1Score =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 × 100. (5) 

 

The confusion matrices of the models were used to analyze digital images to classify liver tumor 

as either normal or abnormal. The generated confusion matrices for the initial training of 50 

epochs are displayed in Fig. 5. The results demonstrated that, with an accuracy of 99.07%, there 

was a predicted disagreement in 12 out of 2 825 images for the input image dimension of 

224×224. With an accuracy of 97.98%, the prediction disparity in the case of input image dimension 

229×229 was in 27 digital images. The diagnosis accuracy was 85.62% with a predicted discrepancy 

of 89 images for an input image dimension of 256×256. The results show that input dimension 

and accuracy are negatively correlated, with input 224 exhibiting the max imum accuracy. On the 

other hand, a drop in performance has been noted for 256×256 input dimensions. The 99.07% 

accuracy rate of the EfficientNet model is an exceptional performance, and all other metrics are 

similarly good. Table 1 presents analysis’s findings. 

 

 

Fig. 5 Confusion matrices of the proposed work for various input image dimension  

for 50 epochs: 256×256 (left), 229×229 (middle), 224×224 (right). 
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Table 1. Performance analysis of the proposed EfficientNet architecture  

based on various input image dimensions for 50 epochs 

Input image 

dimension 

Accuracy, 

(%) 

Specificity, 

(%) 

Precision, 

(%) 

Recall, 

(%) 

F1-Score, 

(%) 

256×256 85.62 92.47 93.71 80.70 86.72 

229×229 97.98 98.08 98.09 97.88 97.98 

224×224 99.07 99.14 99.15 99.22 99.08 

 

The classification training and validation accuracy for the suggested model at each epoch is 

displayed in Fig. 6. The experiment was initially carried out for 50 epochs in total. The accuracy 

curves for input dimensions 256×256 and 229×229 show that the validation accuracy is slightly 

higher than the training accuracy which is a sign of underfitting. To better understand the 

implemented model in this situation, the training experiments are conducted for 80 epochs 

which required more computational resources. Even though performance improvement is 

visibly pronounced in the accuracy curves for 229×229, the performance dynamics of the input 

image dimension of 256×256 was not very effective. The classification training and validation 

accuracy for the suggested model at each epoch is displayed in Fig. 7 and the generated 

confusion matrices are displayed in Fig. 8. 

 

 

Fig. 6 Training and validation accuracy curves for liver tumor classification for 50 epochs 

based on input image dimension: 256×256 (left), 229×229 (middle), 224×224 (right). 

 

 

Fig. 7 Training and validation accuracy curves for liver tumor classification for 80 epochs 

based on input image dimension: 256×256 (left), 229×229 (middle), 224×224 (right). 

 



 INT. J. BIOAUTOMATION, 2024, 28(3), 151-160 doi: 10.7546/ijba.2024.28.3.001001 

157 

 

Fig. 8 Confusion matrices of the proposed work for various input image dimensions  

for 80 epochs: 256×256 (left), 229×229 (middle), 224×224 (right). 

 

The input image dimension of 224×224 shows improved metrics in terms of accuracy, 

specificity, precision, recall and F1-Score (Table 2). The results demonstrated that with 

an accuracy of 99.36%, the predicted disagreement is reduced from 12 to 8 out of 2 825 images 

for the input image dimension of 224×224 which shows the robustness of the model. 

Additionally, the best specificity (99.43%), precision (99.44%), recall (99.30%), and F1-Score 

(99.37%) were obtained with the input image dimension of 224×224. The results reveal that 

input dimension and accuracy are negatively correlated, with input 224×224 exhibiting 

the maximum accuracy. On the other hand, a drop in performance has been noted for 256×256 

input dimensions. The accuracy rate of 99.36% of the EfficientNet model is an exceptional 

performance, and all other metrics are similarly good. 

 

Table 2. Performance analysis of the proposed EfficientNet architecture  

based on various input image dimensions for 80 epochs 

Input image 

dimension 

Accuracy, 

(%) 

Specificity, 

(%) 

Precision, 

(%) 

Recall, 

(%) 

F1-Score, 

(%) 

256×256 85.59 78.06 72.3 98.55 83.41 

229×229 98.90 99.29 99.29 98.53 98.91 

224×224 99.36 99.43 99.44 99.30 99.37 

 

A binary classification model’s effectiveness is assessed using the area under the curve (AUC). 

Greater discrimination and overall model performance are indicated by a higher AUC value. 

With an input dimension of 224×224, an AUC of 0.991 is attained, indicating that the model is 

discriminating well at that moment in time. Fig. 9 displays the AUC values for the model’s 

receiver operating characteristic (ROC) curves for various input image dimensions. 

 

 

Fig. 9 AUC curves for various input image dimensions for liver tumor classification:  

256×256 (left), 229×229 (middle), 224×224 (right). 
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The performance of many cutting-edge deep learning methods for liver tumor classification 

using LiTs dataset is compared in Table 3.  

 

Table 3. Performance comparison of the proposed EfficientNet architecture 

with the state of art methods using LiTs database 

State of art 

networks 

Accuracy, 

(%) 

Specificity, 

(%) 

Precision, 

(%) 

Recall, 

(%) 

Chlebus [7] 87.00 - - 92.00 

Rela [14] 91.75 95.38 90.00 - 

Kolli [10] 99.25 97.83 - 98.63 

Proposed work 99.36 99.43 99.44 99.30 

 
Table 3 displays the accuracy of the classification of liver tumors, which was reported by recent 

research [10] using improved probabilistic neural networks achieving an accuracy of 99.25%. 

Furthermore, opposition based hyena optimization method was used to classify liver tumors 

with great results in another work [14]. The accuracy of the investigation was 91.75%. 

The suggested EfficientNet design outperformed the other models in terms of accuracy, 

specificity, precision and recall. 

 

Conclusion 
In this work, a deep learning model for liver tumor classification was created and evaluated on 

medical envision data. Using volumetric imagery and the EfficientNet architecture, liver tumors 

may be effectively classified. Features are taken out of the images and employed in model 

training so that each image’s class can be accurately predicted. The suggested model 

outperformed the other architectures, according to extensive testing using medical imagery. 

Pathologists should expect substantial advice from the process of using computer-assisted 

technologies to assess clinical specimens for efficiently categorising tumors, based on the 

results of current research as well as previously reported remarks. 

 

Future research efforts will focus on segmenting the lesion’s component, which will help the 

pathologist even more. By increasing the amount of images in the datasets being used, 

increasing the number of training epochs, and utilizing additional deep learning techniques like 

GanNet and MobileNet, research is being done to enhance the usefulness of the suggested 

model. 
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