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Abstract: A new approach is proposed for modelling and monitoring bioprocesses dynamics 

characterized by different metabolic states. Bioprocesses cannot be described by 

a single model. For this reason, three phases characterised by the bioprocess are defined – 

periodic, exponential, and stationary. During each phase, the process passes through one or 

more physiological states. Each physiological state is described by a sub-model with 

a different structure and parameter values. The transition of the process from one 

physiological state to another is carried out by switching the sub-models based on a predefined 

key parameter. Monitoring is performed by a cascade of software sensors using the sub-models 

and real-time measurement of the concentrations of the main process variables. The proposed 

approach was tested by modelling and monitoring the Escherichia coli phytase 

production process.  
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Introduction 

Accurate monitoring of all conditions inherent in individual microorganism cultivation 

processes is necessary for the optimization of bioprocess production. Unfortunately, access to 

sensors that meet the requirements for online process monitoring is limited. One solution to this 

problem is to combine hardware sensors with algorithms for online estimation of unmeasured 

variables and parameters, known as software sensors (SS) [4]. Currently, SS have established 

themselves as promising tools for monitoring various bioprocesses [1, 3, 4, 6-8, 11-13, 14,   

20-22, 27]. In [12, 28], reviews of SS based on models and data have been made. The selection 

of an SS method for a specific biotechnological process requires analysis of the following 

information: (i) complexity of the specific process; (ii) degree of knowledge about system 

dynamics; (iii) quality and quantity of available measurements, types of noise and 

uncertainties, etc. Much of the research in the field of model-based SS is based on the 

development of complex nonlinear extended Kalman filter algorithms, in which there is no 

guarantee of convergence and stability [7, 12]. Other SS monitoring approaches are based on 

adaptive system theory [1, 9, 10, 15, 16, 18, 23], high gain approach [2, 25, 26], sliding mode 

theory [5, 14], SS interval [17], probabilistic observers [3], etc. All these methods are highly 

dependent, to varying degrees, on knowledge of the kinetics of the process. Regarding the 
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monitoring of processes that pass through different physiological states (metabolic regimes) 

and are characterized by multiple specific growth rates, only a few studies [19, 24, 29] 

concerning the application of SS have been proposed in the literature. Such processes, for 

example, include intermediate metabolites (acetate at high-cell density fermentation of 

Escherichia coli and phytase production by E. coli, ethanol at baker yeast production by 

Saccharomyces cerevisiae, gluconic acid at fermentation of Aspergillus niger, etc.) that are 

produced and could be consumed during the cultivation. 

 

The considered class of processes is described by the following reaction scheme, 

including three reaction rates: 

 

oxidative growth on the substrate     
µ1 

k1 S → X + k5 P, (1) 

 

fermentative growth on the substrate     
µ2 

k2 S → X + k3 M + k6 P, (2) 

 

oxidative growth on the intermediate metabolite     
µ3 

k4 M → X + k7 P, (3) 

 

where X, S, M and P are concentrations of biomass, main substrate, intermediate metabolite, 

and target product, respectively; k1 ÷ k7 are yield coefficients; µ1 ÷ µ3 are specific growth rates, 

related to the different reaction rates. 

 

Based on the reaction scheme (1)-(3), physiological states could be described by combinations 

of sub-models, presenting the process dynamics. One challenge is finding reliable information 

for switching from one metabolic state to another and switching the sub-models. 

 

In [23], the oxidative capacity presented by a model with constant parameters is proposed as a 

key parameter (marker) for switching the sub-models. As a result, inaccuracies in the estimation 

are observed, since the values are in a close relationship with the type of the strain and the 

cultivation conditions. A new marker for recognizing the regimen bottlenecks is the kinetics of 

intermediate metabolites, proposed in [29, 30]. The process was monitored by a cascade scheme 

of the SS, which changes its structure depending on the sign of the marker. At the scheme input 

are the real-time measurements of the main substrate and the intermediate metabolite, and at 

the output are the immeasurable variables and parameters.  

 

All the proposed solutions mentioned above are based on sub-models of the considered process, 

whose parameters do not change during the process. When the complexity of the process is 

higher and changes in the state of the process occur very quickly within one phase – periodic, 

exponential, and stationary, the proposed sub-models with constant coefficients cannot give 

accurate results due to the non-linear and non-stationary nature of the considered processes. 

 

This paper proposes a new method for modelling and online monitoring of bioprocesses that 

cannot be described by a single model. Three phases, periodic, exponential and stationary, 

characterizing the bioprocess are defined. During each of the phases, the process passes through 

one or more physiological states. Each physiological state is described by a sub-model with 
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a different structure. The sub-model switching is based on a predefined adaptive key parameter. 

Based on a cascade of SS using the sub-models and real-time measurement of the 

concentrations of the main substrate and intermediate metabolite, monitoring is carried on. 

The proposed approach is tested by modelling and monitoring the phytase production process 

by E. coli BL21(DE3)pPhyt109.  

 

For the realization of the new method, a four-step cascade scheme of SS is developed. Inputs 

of the scheme are online measurements of glucose (main substrate) and acetate (intermediate 

metabolite) concentrations. In the first step, the SS of acetate production or consumption rates 

are designed using acetate measurements. The outputs of the scheme are the specific biomass 

growth rates and the biomass and target product (phytase) concentrations. Conclusions about 

the applicability of the proposed approach are made. 

 

Materials and methods 

Operational models of a class bioprocesses  
The class processes go through three metabolic regimes according to the scheme (1)-(3). A key 

parameter (marker) that adaptively recognizes the change of metabolic regimes of the process 

and on this basis switches the various sub-models that describe these regimes, is applied. 

The key parameter is the kinetics of the intermediate metabolite (production or consumption), 

information on which can be obtained from real-time measurements of this metabolite. 

 

The model (4) describing the oxidative-fermentative growth of biomass on glucose (4.1) and 

oxidative growth on intermediate metabolite (M) is shown in Fig. 1. It is represented by two 

sub-models, where F is substrate feed rate, V is the reactor volume and Sin is the concentration 

of feeding substrate. When the marker accepts positive or zero values, the sub-model describing 

the oxidative-fermentative growth on the main substrate is included. Negative values of the 

marker are an indicator of metabolite consumption and transition to oxidative growth on the 

main substrate and metabolite. 

 

 

Fig. 1 Two sub-models describing the dynamics of the class of controlled processes 

 

 

On-line estimation of the rate of metabolite production 
According to the general approach to estimating all kinetics as an unknown non-stationary 

parameter [10, 12], the SS for the rate of metabolite production has the following form: 

oxidative-fermentative growth on substrate 

𝜙𝑀 ≥ 0     
𝑑

𝑑𝑡
 

𝑋
𝑆
𝑀
𝑃

 =  

1 1
−𝑘1 −𝑘1
0 𝑘3
𝑘5 𝑘6

  
𝜇1
𝜇2
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𝑉
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𝜙𝑀 =
𝑑𝑀

𝑑𝑡
+

𝐹
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oxidative growth on intermediate metabolite 
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𝑑М̂

𝑑𝑡
=  �̂�м𝑝 −

𝐹

𝑉
М +  𝑤1(М − М̂), (5.1) 

 

𝑑�̂�м𝑝

𝑑𝑡
=  𝑤2(М −  М̂), (5.2) 

 

where �̂�м𝑝  and М̂  are the estimates of metabolite production rate and metabolite 

concentration respectively; and M is the measured values of metabolite; and w1 and w2 are 

tuning parameters of the SS (5).  

 

Software sensors of biomass growth rate on the substrate are presented as: 

 

𝑑�̂�

𝑑𝑡
=  −𝑘1�̂�𝑋1 −  𝑘2�̂�𝑋2 +

𝐹

𝑉
(𝑆𝑖𝑛 − 𝑆) +  𝑤3(𝑆 − �̂�), (6.1) 

 

𝑑�̂�𝑥1

𝑑𝑡
=  𝑤4(𝑆 −  �̂�), (6.2) 

 

where �̂�𝑋1 and �̂�𝑋2 are estimates of biomass growth rates in oxidation and fermentation on 

the substrate, respectively, and w3 и w4 are tuning parameters of the SS (6). 

 

The estimates of �̂�𝑋2 are obtained using the following relation: 

�̂�𝑋2 =  �̂�м𝑝 𝑘3⁄ . (7) 

The tuning of the SS will be demonstrated by a case study. 
 

 

On-line estimation of the rate of metabolite consumption 
The structure of this SS is similar to (5) as follows: 

 

𝑑М̂

𝑑𝑡
=  �̂�м𝑐 −

𝐹

𝑉
М +  𝑤5(М −  М̂), (8.1) 

 

𝑑�̂�м𝑐

𝑑𝑡
=  𝑤6(М −  М̂), (8.2) 

 

where �̂�м𝑐 is the estimate of metabolite consumption rate, and w5 и w6 are tuning parameters 

of the SS (8).  

 

The tuning of the SS (5), (6), and (8) will be demonstrated by a case study. Using the estimates 

of metabolite consumption rate (�̂�м𝑐) the estimation of oxidative growth rate on metabolite, 

biomass, target product, and specific growth rates could be obtained as presented bellow. 

 

Online estimation of oxidative growth rate on metabolite, biomass,  

target product, and specific growth rates 
The estimates of biomass growth rate in oxidation on metabolite, �̂�𝑋3, are obtained using the 

relationship as follows: 

 

�̂�𝑋3 = − �̂�м𝑝 𝑘4⁄ . (9) 
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Based on SS (5)-(9) the estimates of biomass (�̂�) and target product (�̂�) can be calculated using 

the equations: 

 

𝑑�̂�

𝑑𝑡
=  �̂�𝑋1 +  �̂�𝑋2 + �̂�𝑋3 −

𝐹

𝑉
�̂�, (10) 

 

𝑑�̂�

𝑑𝑡
= 𝑘5�̂�𝑋1 + 𝑘6�̂�𝑋2 + 𝑘7�̂�𝑋3 −

𝐹

𝑉
�̂�. (11) 

 

These results allow the values of specific growth rates µ1, µ2 and µ3 to be received: 

 

�̂�1 =  �̂�𝑋1 �̂�⁄ , (12.1) 

 

�̂�2 =  �̂�𝑋2 �̂�⁄ , (12.2) 

 

�̂�3 =  �̂�𝑋3 �̂�⁄ . (12.3) 

 

The relationships between SS for the monitoring of the considered class of processes are given 

in Fig. 2. 

 

Fig. 2 Cascade scheme of software sensors for process monitoring 

 
Results and discussion 
Case study – modelling and monitoring of fed-batch process 

for phytase production 
The experimental data for extracellular production of bacterial phytase fed-batch cultivation of 

E. coli strain BL21(DE3)pPhyt109 are carried out in the Department of Fermentation 

Engineering, Faculty of Technology, University of Bielefeld [24]. Analysing the experimental 

data (Fig. 3, black stars), three phases are clearly outlined – periodic, exponential and stationary, 

as for each of them, one or two metabolic regimes appear. For the considered case, the main 

substrate is glucose, the intermediate metabolite is acetate and the target product is phytase. 

As can be seen from the acetate experimental data, in each phase production and consumption 

of acetate is observed. For this reason, each phase has to be described with the proposed model 

from Fig. 1. This requires the identification of the group of sub-models at each phase. 
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For the purposes of the simulation investigations, the following kinetic expressions are used: 

 

𝜇1 = 𝑞𝑠,𝑐𝑟𝑖𝑡/𝑘1, (13.1) 

 

𝜇2 = (𝑞𝑠 − 𝑞𝑠,𝑐𝑟𝑖𝑡)/𝑘2, (13.2) 

 

𝜇3 = 𝑞𝑎𝑐/𝑘4, (13.3) 

 

where 𝑞𝑠,𝑐𝑟𝑖𝑡 =
𝑞𝑜,𝑚𝑎𝑥

𝑘𝑜𝑠

𝐾𝑖,𝑜

𝐾𝑖,𝑜+𝐴
 and 𝑞𝑎𝑐 = 𝑞𝑎𝑐,𝑚𝑎𝑥

𝐴

𝐴+𝐾𝐴

𝐾𝑖,𝐴

𝐾𝑖,𝐴+𝐴
. 

 

In the system (13) 𝑞𝑠,𝑐𝑟𝑖𝑡, 𝑞𝑜,𝑚𝑎𝑥, 𝑘𝑜𝑠, 𝐾𝑖,𝑜 , 𝑞𝑎𝑐,𝑚𝑎𝑥, 𝐾𝑖,𝐴, 𝐾𝐴 are kinetic constants. 

 

The identification of the models (4) with the expressions (13) under the criterion of minimum 

root mean square error between the model and experimental data is performed. The results are 

given in Table 1. 

 

Table 1. Optimal values of model parameters 

Phase qsmax ks kis qomax kos kio qamax ka kia k1 k2 k3 k4 k5 k6 k7 

1 4.2 0.19 5.54 1.1 2.15 0.1 0.08 1.17 - 3.69 0.56 0.19 4.6 1.4 2.7 0.45 

2 34.2 0.79 1.83 0.5 2.5 0.2 0.143 0.97 0.25 2.08 2.17 0.05 4.1 2.9 1.5 0.5 

3 77.1 0.47 12.3 2.1 3.3 0.13 0.002 0.3 0.23 16.6 11.7 0.42 9.9 39.4 9.5 0.56 

 

The values of the kinetic parameters of the models for the three phases are compared in the 

table. In general, they have significant differences in values with few exceptions. This is an 

expected fact from the point of view of the non-stationary nature of the bioprocesses and the 

different dynamics during the different phases. 

 

The proposed new method for modelling bioprocesses makes it possible to describe with good 

accuracy the dynamics of complex processes that pass through different physiological states 

and different growth phases, as well as are characterized by several specific growth rates. 

The obtained results are shown in Fig. 3, where, for each phase, a comparison between 

experimental and model data is given. In all figures, with black lines and points are the results 

of the modelling and monitoring of the periodic phase, with red lines and points – 

of the exponential and with blue lines and points – of the stationary phase. 

 

The monitoring of this process is realized by applying the SS (5)-(12) based on the cascade 

scheme shown in Fig. 2. The tuning of SS is carried out assuming that there is equality between 

the eigenvalues of the system of estimation errors as h1 = h2 = h with h – a negative constant 

to ensure the stability of SS (5)-(12). In this way, the tuning procedure is reduced to the choice 

of one parameter (h) for each SS. The design parameters are calculated as follows: 𝑤𝑖 = -2h, 

𝑤𝑗 = 𝑤𝑖
2 4⁄ , where 𝑖 = 1, 3, 5, j = 2, 4, 6, and h = -10. 
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Fig. 3 Comparison between experimental and model data for the main process variables 

 
Fig. 4 shows the estimation results of acetate production and consumption rates. The dashed 

lines delineate parts of the different phases of the process, where it is clearly seen that 

the production and consumption of this metabolite alternate in each phase. As can be seen from 

the results, the estimation quality is good when compared to the model. 

 

 

Fig. 4 Model (lines) and estimated values (points) of the acetate production  

and consumption rates 
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The results for the specific growth rates were obtained based on Eqs. (12), are shown in Fig. 5. 

The comparison of the estimates with the model data for all three specific rates shows a good 

tracking of their dynamics. 

 

 

Fig. 5 Model (lines) and estimated values (points) of the three specific growth rates 

 

Fig. 6 shows the results of the estimation of the biomass and the target product – phytase 

obtained from Eqs. (10) and (11). The estimates were compared to the experimental data for 

each of the phases. 

 

 

Fig. 6 Experimental (circles) and estimated values (points) of concentrations of biomass  

and target product 
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Discussion 
The proposed approach for modelling and monitoring bioprocesses with different metabolic 

states allows a good description of the process dynamics of the fed-batch cultivation of 

E. coli BL21(DE3)pPhyt109 for the extracellular production of bacterial phytase. This is due 

both to dividing the process into three phases and to the proposed sub-models, switching from 

a key parameter, which describes the change of physiological states for each phase of 

the process. An evolutionary algorithm was applied for the parametric identification of 

the model. It is realized using optimization under criteria minimal mean square errors between 

experimental data of the main process variables and corresponding model data. The three phases 

were modelled with good accuracy as can be seen in Fig. 3. Based on the comparison of the 

experimental data of biomass and phytase and estimated ones (Fig. 6), it can be observed that 

the results for the first and the second phase are more accurate in comparison to the third phase. 

This is due to changes in the dynamics of the intermediate metabolite, which determines 

the frequent switching of sub-models and SS. The process kinetics, represented by the dynamics 

of the specific growth rates (Fig. 5), corresponds to the physiological states through which the 

process passes. As can be seen from the results presented in Fig. 4, the production and 

consumption of the intermediate metabolite acetate is consistent with the experimental data and 

is reflected in the dynamics of the specific rates µ2 and µ3.  

 

Conclusion 
The proposed new method for modelling and monitoring bioprocesses makes it possible to 

describe with good accuracy the dynamics of complex processes that pass through different 

physiological states and different growth phases, as well as are characterized by several specific 

growth rates. 

 

The proposed approach along with other monitoring and control models and algorithms will be 

embedded in the software package Bioprocess Interactive Modeling and Control System 

(InSEMCoBio) to train bioengineering students and professionals with modern modelling 

methods (http://insemcobio.ir.bas.bg/). 
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