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Abstract: Eight single (SGA) and eight multi-population (MGA) genetic algorithms (GA) 

differing in the sequence of implementation of the main genetic operators’ selection, 

crossover and mutation, or omitting the mutation operator, have been examined for the 

purposes of parameter identification of a Saccharomyces cerevisiae fed-batch fermentation 

process model. The influence of some of the main genetic algorithm parameters, 

namely number of individuals, maximum number of generations, generation gap, crossover 

and mutation rates for both SGA and MGA, and insertion and migration probability for 

MGA only, have been investigated in depth. Almost all applied SGA and MGA led to similar 

values of the optimization criterion but the SGA with operators’ sequence mutation, 

crossover and selection, and MGA with operators’ sequence crossover, selection and 

mutation, are significantly faster than others while keeping the model accuracy. Among 

the considered GA parameters, generation gap influences most significantly to SGA and 

MGA convergence time, saving of about 40% of computational time of the algorithms 

without affecting the model accuracy. 

 

Keywords: Single genetic algorithms, Multi-population genetic algorithms, 

Parameter identification, Fed-batch fermentation process model, Saccharomyces cerevisiae. 

 

Introduction 

Genetic algorithms (GA) proposed by Holland [13] and further developed by Goldberg [11] 

are an optimization technique, frequently applied and proven to be very successful in solving 

of complicated optimization tasks [1, 15]. Modelling and further optimization of fermentation 

processes can be assumed as such a complex problem. The importance of fermentation 

processes comes from their numerous applications in different branches of industry, 

starting from the production of pharmaceuticals, chemicals and enzymes, and ending to 

the yield of yeast, foods and beverages. It is well known that living microorganisms 

participated in fermentation processes predetermine their specific characteristics as modelling 

and control objects. This is the reason fermentation processes to have a fame of complex, 

nonlinear, dynamic systems with interdependent and time-varying process variables. 

An important step for the adequate modelling of such a complicated and rather 

time-consuming task is the choice of a certain optimization procedure for model 

parameter identification. In general, the conventional optimization methods cannot meet 

the limitations of fermentation processes, while GA, as a representative of metaheuristic and 

stochastic techniques, have all prerequisites to overcome them [14]. The applicability of 

single-population genetic algorithm (SGA) and multi-population genetic algorithm (MGA), 

as well as some of their modifications, were demonstrated for identifying model parameters in 
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bacteria and yeast fermentation processes models [13, 14, 17, 18]. Thus, GA have been 

proven to be successful tools for solving the above discussed problem. 

 

The aim of this investigation is to demonstrate sixteen different kinds of GA (eight SGA and 

eight MGA) as a powerful tool for parameter identification of a S. cerevisiae fed-batch 

fermentation process model. Moreover, the influence of the main genetic 

algorithm parameters, namely number of individuals, maximum number of generations, 

generation gap, crossover and mutation rates, for both SGA and MGA, as well as insertion 

and migration probability for MGA, is going to be thoroughly investigated. 

 

Yeast fed-batch fermentation process model 
For the purposes of model parameter identification, experimental data from S. cerevisiae  

fed-batch cultivation conducted in the Institute of Technical Chemistry, University of 

Hannover, Germany have been used. Process conditions and real experimental data consisting 

of on-line measurements of substrate (glucose) and dissolved oxygen, as well as off-line 

measurements of biomass and ethanol have been fully described in [14]. 

 

Mathematical model in which the dynamics of biomass, substrate, ethanol and dissolved 

oxygen concentrations of S. cerevisiae fed-batch fermentation process is commonly described 

by the system of non-linear differential equations [14], as given below:  
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where X, S, Sin, E, O2 are respectively the concentrations of biomass, [g·l−1], 

substrate (glucose), [g·l−1], initial glucose concentration in the feeding solution, [g·l−1], 

ethanol, [g·l−1], and dissolved oxygen, [%]; *

2O  – dissolved oxygen saturation concentration, 

[%]; F – feeding rate, [h−1]; V – volume of bioreactor, [l]; 2O

Lk a  – volumetric oxygen 

transfer coefficient, [h−1]; 2S, 2E – maximum growth rates of substrate and ethanol, [h−1]; 

kS, kE – saturation constants of substrate and ethanol, [g·l−1]; YSX, YOS, YEX, YOE – 

yield coefficients of substrate and ethanol, [g g−1].  

 

All functions in the model (Eqs. (1)-(5)) are continuous and differentiable. Also, nine model 

parameters, p = [2S, 2E, kS, kE, YSX, YEX, 2O

Lk a , YOS, YOE], going to be identified, fulfil the  

non-zero division requirement. 
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Mean square deviation between the model output and the experimental data obtained during 

the fermentation process is used as an optimization criterion: 

 

 
2

*J Y Y min   , (6) 

 

where Y and Y* are, respectively, the experimental Y = [X; S; E; O2] and the model predicted 

Y* = [X*, S*, E*, O2*] data. 

 

Genetic algorithms – background and modifications 
GA work in a stochastic way with a population of coded parameter sets known as 

chromosomes and search a global optimal solution through the three main GA operators – 

selection, crossover and mutation – implementing the idea of survival of the fittest. GA may 

act in a single-population and multi-population mode, with a certain number of 

individuals/populations involved. Standard single-population GA works with one population 

of individuals. Each randomly generated individual (solution) is evaluated, and based on 

the evaluation, a fitness value is assigned. The most suitable solutions are selected according 

to this value, then crossover proceeds to form a new offspring. Finally, mutation with 

a determined probability has occurred aiming to prevent falling of all solutions into 

a local optimum.  

 

Multi-population GA is more similar to nature and works with many populations, 

called subpopulations, which proceed independently from each other. After a certain number 

of generations, known as an isolation time, individuals migrate between the subpopulations.  

 

According to [11, 12], working principle for SGA and MGA might be presented in several 

steps as follows: 

1. [Start]  

Generate a random population of n chromosomes in SGA  

or  

Generate k random subpopulations, each with n chromosomes in MGA 

2. [Object function] 
Evaluate the object function of each chromosome x in the population/subpopulation 

3. [Fitness function] 
Evaluate the fitness function of each chromosome n in the population/subpopulation 

4. [New population] 
Create a new population by repeating following steps: 

4.1. [Selection] 

Select parent chromosomes from the population/subpopulation according to 

their fitness function 

4.2. [Crossover] 

Cross over the parents to form new offspring with a crossover probability  

4.3. [Mutation] 
Mutate new offspring at each locus with a mutation probability 

5. [Accepting] 

Place a new offspring in a new population 

6. [Replace] 

Use new generated population for a further run of the algorithm 
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7. [Migrate] (for MGA only) 

Migration of individuals between subpopulations after the time of isolation has 

expired 

8. [Test] 

If the end condition is satisfied, stop and return the best solution in current population, 

else move to Loop step  

9. [Loop] 
 Go to Step 2. 

 

SGA and MGA terminate when a certain criterion is met, e.g. number of generations 

performed, evaluation time passed, fitness threshold reached, fitness convergence satisfied, 

etc; in this investigation – when a certain number of generations is performed. 
 

Modified SGA 

SGA, originally developed in [11] works with the main GA operators in a sequence selection, 

crossover and mutation, thus further denoted as SGA_scm (comes from selection, crossover, 

mutation). Since the main idea of GA is to imitate the processes occurring in nature, one can 

assume that the probability crossover to occur before mutation is comparable to that mutation 

to come first, followed by crossover; also, selection could be performed before or after 

crossover and mutation, no matter of their order. This idea has been firstly developed as  

a modified simple genetic algorithm SGA_cms and applied to parameter identification of  

an E. coli fermentation process [20]. Following this logic, the authors of this investigation 

elaborated four new modifications of SGA, namely SGA_smc, SGA_mcs, SGA_csm and 

SGA_msc [3, 4, 6-8], along with the SGA_scm and SGA_cms [2]. All elaborated SGA 

modifications are successfully applied for the purposes of parameter identification of  

the S. cerevisiae fed-batch fermentation process model, aiming to improve the model 

accuracy and GA convergence time. Another SGA modification without performance of 

mutation operator [21], here denoted as SGA_sc, becomes an authors’ inspiration for 

development of SGA_cs [8], also for the aforementioned purposes.  

 

To illustrate the above-mentioned working principle of GA and elaborated SGA 

modifications, below are given the sequence of algorithm steps for SGA:  

 SGA_scm (comes from selection, crossover, mutation): 1, 2, 3, 4.1, 4.2, 4.3, 5, 6, 8, 9 

 SGA_cms (comes from crossover, mutation, selection): 1, 2, 3, 4.2, 4.3, 4.1, 5, 6, 8, 9 

 SGA_smc (comes from selection, mutation, crossover): 1, 2, 3, 4.1, 4.3, 4.2, 5, 6, 8, 9 

 SGA_mcs (comes from mutation, crossover, selection): 1, 2, 3, 4.3, 4.2, 4.1, 5, 6, 8, 9 

 SGA_csm (comes from crossover, selection, mutation): 1, 2, 3, 4.2, 4.1, 4.3, 5, 6, 8, 9 

 SGA_msc (comes from mutation, selection, crossover): 1, 2, 3, 4.3, 4.1, 4.2, 5, 6, 8, 9 

 SGA_sc (comes from selection, crossover): 1, 2, 3, 4.1, 4.2, 5, 6, 8, 9 

 SGA_cs (comes from crossover, selection): 1, 2, 3, 4.2, 4.1, 5, 6, 8, 9. 
 

Following the same line of logics and inspired also from [16], the same modifications have 

been elaborated for the MGA as well, considering the obligate for MGA Step 7 from  

the GA working principle, presented above. Additional explanations for elaboration of 

different MGA modifications, along with their applications to the S. cerevisiae fed-batch 

fermentation process model could be found in [5, 7, 9, 18]. 

 

The parameter identification of the model (1)-(5), applying (6) as an optimization criterion, 

was carried out in Matlab 7 environment using Genetic Algorithm Toolbox [10]. 
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For the purposes of different algorithms comparison, all calculations were performed on 

Intel Pentium 4 PC (2.4 GHz) platform running Windows XP.  

 

Results and discussion 
Investigation of the influence of SGA parameters 

For the purposes of parameter identification of the S. cerevisiae fed-batch fermentation 

process, altogether eight kinds of SGA were examined. The influence of five main GA 

parameters, namely number of individuals (NIND), number of generations (MAXGEN), 

generation gap (GGAP), crossover probability (XOVR) and mutation probability (MUTR) 

were investigated with the aim to explore their influence on the SGA solutions’ accuracy and 

convergence time. Table 1 presents the values of GA parameters, chosen according to some 

recommendations in [17]: 
 

Table 1. Values of the investigated GA parameters 

NIND MAXGEN GGAP XOVR MUTR 

20 100 0.5 0.65 0.02 

40 200 0.67 0.75 0.04 

60 500 0.8 0.85 0.06 

80 1000 0.9 0.95 0.08 

100 - - - 0.1 

 

Each GA parameter has been examined separately, while the values of the other parameters 

remain unchanged. When any of the GA parameters is examined for its values (Table 1),  

the values of the other parameters are set to: NIND = 20, MAXGEN = 100, GGAP = 0.8,  

XOVR = 0.95 and MUTR = 0.05 according to recommendations in [17]. The type of 

GA operators used for different SGA are presented in Table 2. 
 

Table 2. Type of GA operators 

Operator Type 

encoding binary 

reinsertion fitness-based 

crossover double point 

mutation bit inversion 

selection  roulette wheel selection 

fitness function linear ranking 

 

After a thorough analysis of the influence of the main GA parameters on the implementation 

of the eight kinds of SGA, no significant decrease of the time to find a global minimum has 

been observed when different values of XOVR have been explored [2]. However,  

XOVR = 0.85 might be recommended as more preferable value. Also, no clear trend might be 

drawn for the influence of MUTR on the convergence time and the solution accuracy of 

the eight SGA [2]. Meanwhile, it is worth to note that SGA_mcs executed at MUTR = 0.1 

has led to save up to 20% of the algorithm convergence time [2, 7], thus recommended as 

a preferable value.  

 

When the influence of MAXGEN has been explored for all kinds of SGA, the value of 

the objective function has decreased quite insignificantly with the increase of MAXGEN but 

for the expense of the algorithms computational time. As such, MAXGEN = 100 is accepted 
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as a suitable compromise for the degree of the model accuracy and computational time [2, 7]. 

Concerning NIND, the value of the objective function has been even increased a bit with 

the increase of the number of individuals in the population. The time for solution finding has 

also been grown. That is why NIND = 20 is considered as an acceptable compromise for 

the achieved model accuracy and the computational time required by the algorithm to reach 

an optimal solution [2, 7]. 

 

Among all investigated five GA parameters, GGAP has been distinguished as the most 

sensitive one according to the algorithm’s convergence time [2, 7]. Table 3 presents 

the results for the values of the optimization criterion J, as well as for the computational time t 

when eight types of SGA have been implemented at different GGAP values for the purposes 

of parameter identification of the S. cerevisiae fed-batch fermentation process model. 
 

Table 3. Results from parameter identification with eight different types of SGA  

when GGAP is examined  

GGAP 
SGA_scm SGA_smc SGA_cms SGA_mcs 

J t, s J t, s J t, s J t, s 

0.5 0.0223 43.81 0.0221 44.52 0.0222 38.17 0.0221 37.28 

0.67 0.0221 52.78 0.0221 55.05 0.0225 37.19 0.0223 39.78 

0.8 0.0221 67.92 0.0221 67.64 0.0222 50.30 0.0224 53.45 

0.9 0.0222 70.63 0.0222 70.97 0.0224 52.34 0.0230 61.44 

 

Table 3. (continuation) 

GGAP 
SGA_csm SGA_msc SGA_cs SGA_sc 

J t, s J t, s J t, s J t, s 

0.5 0.0224 36.28 0.0223 36.27 0.0230 31.59 0.0223 30.74 

0.67 0.0223 39.20 0.0228 53.55 0.0248 41.38 0.0235 43.95 

0.8 0.0223 60.31 0.0223 47.49 0.0233 41.25 0.0228 42.58 

0.9 0.0235 55.92 0.0223 77.61 0.0230 53.73 0.0237 39.36 

 

As shown in Table 3, the values of the optimization criterion obtained after the application of 

four types of SGA executed the selection operator before and after the crossover and mutation 

operators (the upper part of Table 3) are quite similar and vary between 0.0221 and 0.0230, 

which means about 4% deviation in model accuracy. In the case of SGA_mcs, distinguished 

as simultaneously the most accurate and the fastest one in the considered group,  

the algorithm’s convergence time can be reduced by almost 40% without loss of model 

accuracy when GGAP = 0.5 is used instead of 0.9. Even more, in the case of SGA_mcs 

the value of the objective function decreases from the highest 0.0230, among all observed 

values in this group, to the lowest one 0.0221. 

 

Similar values of the optimization criterion obtained after the application of four types of 

SGA ensure that, from the accuracy point of view, the execution of mutation operator before 

the crossover operator does not lead to a decrease in the degree of the model adequacy. 

Moreover, in the most cases, the proposed modifications for SGA reduce the time for 

reaching global minimum. Presented comparison shows that the execution of GA operators in 

a sequence mutation, crossover and selection is optimal in terms of the GA convergence time, 

with guaranteed high adequacy of the found solution.  
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The trend observed for the previous four algorithms is outlined again, when the next four GA 

were examined (the lower part of Table 3). As evident from Table 3, similar structures of 

SGA lead to obtaining comparable results when considering the value of the objective 

function and the convergence time of the algorithms. Two algorithms without execution of 

the mutation operator – SGA_cs and SGA_sc can be distinguished as the fastest. It is quite 

logical that when GA are performed with two operators (selection and crossover), 

the computational time of the algorithm will decrease, but in most cases, at the expense of 

the accuracy of the solution. In the case of SGA_sc, which is distinguished as the fastest 

among the studied algorithms of this group, up to 28% of the solution time can be saved when 

using GGAP = 0.5 instead of 0.9, with a significant increase of degree of model accuracy. 

Two algorithms without execution of the mutation operator are logically the fastest, 

followed by the two algorithms in which the selection operator is executed between 

the operators for reproduction of the individuals. It can be concluded that, among the studied 

parameters, GGAP is the most sensitive parameter to SGA convergence time. 
 

Based on this analysis, SGA_mcs can be distinguished as a “favorite” among all eight 

studied SGA. In order to demonstrate the obtained results, SGA_mcs is applied for parameter 

identification of the S. cerevisiae fed-batch fermentation process model, using the values of 

GA parameters recommended based on the above analysis: NIND = 20, XOVR = 0.85,  

MUTR = 0.1, GGAP = 0.5 and MAXGEN = 100. Table 4 presents the estimated values of 

model parameters after SGA_mcs implementation. 
 

Table 4. Estimated values of model parameters after SGA_mcs application  

Parameter 
2S 

[1/h] 

2E 

[1/h] 

kS 

[g/l] 

kE 

[g/l] 

YSX 

[g/g] 

YEX 

[g/g] 

kLa 

[1/h] 

YOS 

[g/g] 

YOE 

[g/g] 

Value 0.95 0.12 0.12 0.80 0.4 1.47 113.02 894.88 254.95 

 

Fig. 1 presents experimental and model-predicted data, for the concentrations of biomass, 

ethanol, substrate and dissolved oxygen after SGA_mcs implementation for parameter 

identification of the S. cerevisiae fed-batch fermentation process model. 
 

Investigation of the influence of MGA parameters 

The influence of altogether seven MGA parameters on the accuracy of the solution and 

convergence time is investigated: five of them are identical to those considered for SGA 

(Table 1), and another two, specific for MPA, are added, namely insertion probability (INSR) 

and migration probability (MIGR). Table 5 presents different values for INSR and MIGR, 

based on some recommendations in [17]. 

 

Table 5. Values of the investigated parameters specific to MGA  

INSR MIGR 

0.5 0.1 

0.8 0.2 

0.9 0.4 

1 - 
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c) substrate    d) dissolved oxygen 

Fig. 1 Experimental and model-predicted data  

for biomass, ethanol, substrate and dissolved oxygen concentrations 

after SGA_mcs implementation 
 

By analogy to SGA, each GA parameter has been examined separately, while the values of 

the other parameters remain unchanged. When any of the GA parameters is examined for 

its values (Tables 1 and 5), the values of the other parameters are set to: NIND = 20,  

XOVR = 0.95, MUTR = 0.05, GGAP = 0.8, INSR = 0.95, MIGR = 0.2, and  

MAXGEN = 100. The type of GA operators is identical to those used for SGA (Table 2). 

Additional parameters necessary only for MGA implementation are number of subpopulations 

(SUBPOP) and number of generations, after which migration takes place between 

subpopulations (MIGGEN), set to 5 and 20, respectively, for this investigation. 
 

After a thorough analysis of the influence of the main GA parameters on the implementation 

of the eight kinds of MGA, no significant decrease of the time to find a global minimum has 

been again observed when different values of XOVR have been explored [2]. As for SGA, 

XOVR = 0.85 might be recommended as the most suitable value. Again, no clear trend might 

be drawn for the influence of MUTR on the convergence time and the solution accuracy of 

the eight MGA [2]. However, MUTR = 0.02 can be accepted as more preferable value for 

MGA, saving up to 24% of the computational time in the case of MGA_msc, without loss of 

model accuracy [2]. 

 

By analogy to the analysis for the results obtained when SGA have been implemented, 

MAXGEN = 100 and NIND = 20 are recommended for MGA implementation as 

an acceptable compromise for the degree of model accuracy and algorithm computational 

time [2]. No significant influence has been observed when exploring different values of INSR 

and MIGR [2]. However, INSR = 0.9 and MIGR = 0.1 are recommended as preferable values 
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for MGA implementation for the purposes of parameter identification of the yeast fed-batch 

fermentation process model.  

 

Again, as for SGA, GGAP has been distinguished as the most sensitive one among the studied 

MGA parameters in terms of the algorithm’s convergence time. Table 6 presents the results 

for the values of the optimization criterion J, as well as for the computational time t when 

eight types of MGA have been implemented at different GGAP values for the purposes of 

parameter identification of the S. cerevisiae fed-batch fermentation process model.  

 

Table 6. Results from parameter identification with eight different types of MGA  

when GGAP is examined 

GGAP 
MGA_scm MGA_smc MGA_cms MGA_mcs 

J t, s J t, s J t, s J t, s 

0.5 0.0220 100.89 0.0220 111.78 0.0221 273.91 0.0220 307.84 

0.67 0.0221 112.17 0.0220 141.09 0.0221 325.58 0.0220 332.06 

0.8 0.0221 155.47 0.0220 178.97 0.0221 321.02 0.0221 373.16 

0.9 0.0220 170.27 0.0220 340.67 0.0221 343.69 0.0221 349.75 

 

Table 6. (continuation) 

GGAP 
MGA_csm MGA_msc MGA_cs MGA_sc 

J t, s J t, s J t, s J t, s 

0.5 0.0221 97.69 0.0220 98.30 0.0223 267.92 0.0222 111.53 

0.67 0.0221 128.88 0.0221 121.86 0.0222 331.97 0.0224 119.73 

0.8 0.0221 163.86 0.0220 145.67 0.0223 333.63 0.0221 153.39 

0.9 0.0221 165.67 0.0220 166.02 0.0221 357.02 0.0220 168.22 

 

As seen from Table 6, the results obtained by MGA_scm are very similar to the results 

obtained by MGA_smc. Also, the results when MGA_cms is applied are close to those when 

MGA_mcs is implemented, but the convergence time for this couple of algorithms is much 

longer than the first MGA couple. It is obvious that there is no loss of model accuracy when 

the mutation operator is executed before the crossover operator. Also, it can be summarized 

that the execution of the selection operator before and between the crossover and mutation 

operators (no matter of their order) needs less computational time. The accuracy of the two 

algorithms without performing the mutation operator, namely MGA_sc and MGA_cs,  

is logically decreased, as previously observed for SGA. In the case of MGA_csm, 

distinguished as the fastest among the eight studied kinds of MGA, up to 41% of the 

algorithm’s convergence time can be saved without loss of model accuracy if GGAP = 0.5 

is used instead of 0.9.  

 

Based on this analysis, MGA_csm can be distinguished as a “favorite” among all eight 

studied MGA. In order to demonstrate the obtained results, MGA_csm is applied for 

parameter identification of the S. cerevisiae fed-batch fermentation process model, using the 

values of GA parameters recommended based on the above analysis: NIND = 20,  

XOVR = 0.85, MUTR = 0.2, GGAP = 0.5, INSR = 0.9 and MIGR = 0.1, and  

MAXGEN = 100. Table 7 presents the estimated values of model parameters after MGA_csm 

implementation. 
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Table 7. Results from parameter identification when MGA_csm is applied 

Parameter 2S 

[1/h] 

2E 

[1/h] 

kS 

[g/l] 
kE 

[g/l] 
YSX 

[g/g] 
YEX 

[g/g] 
kLa 

[1/h] 
YOS 

[g/g] 
YOE 

[g/g] 

Value 0.90 0.12 0.15 0.80 0.41 1.64 65.20 509.82 360.17 

 

Fig. 2 shows results from experimental and model predicted data, for biomass, ethanol, 

substrate and dissolved oxygen, respectively when MGA_csm is implemented. 
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c) substrate    d) dissolved oxygen 

Fig. 2 Experimental and model-predicted data  

for biomass, ethanol, substrate and dissolved oxygen concentrations 

after MGA_csm implementation  
 

Presented in this investigation results from the implementation of altogether eight kinds of 

SGA and eight kinds of MGA, demonstrate their effectiveness for solving complex nonlinear 

problems, such as parameter identification of the S. cerevisiae fed-batch fermentation 

process model. 

 

Conclusion 

In this study, different kinds of GA as well as the influence of the main GA parameters have 

been explored toward convergence time and the degree of model accuracy. Altogether sixteen 

GА – eight single GA and eight multi-population GA have been implemented for the 

purposes of parameter identification of the S. cerevisiae fed-batch fermentation 

process model. Different SGA and MGA diverse from each other by the execution order of 

the main genetic operators – selection, crossover and mutation, or in the absence of 

mutation operator. The influence of the most important parameters of GA, namely NIND, 

MAXGEN, GGAP, XOVR and MUTR has been investigated for SGA, aiming at improving 

the accuracy of the solution and the convergence time of the algorithms. In addition, 
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the influence of INSR and MIGR has been explored only in the case of MGA. Among all 

investigated parameters, GGAP has been distinguished as the most sensitive one towards 

the convergence time, both for SGA and MGA. About 40% of the computational time can be 

saved without loss of model accuracy in the cases of SGA_mcs and MGA_csm, when  

GGAP = 0.5 is used instead of 0.9. No such significant influence on the algorithm’s 

convergence time is observed when other GA parameters have been examined. However, 

NIND = 20, XOVR = 0.85, MUTR = 0.1/0.02 (for SGA/MGA), MAXGEN = 100, 

MIGR = 0.1 (for MGA only) and INSR = 0.9 (for MGA only) might be considered as a good 

compromise for model accuracy and time for finding the solution. Selected values of the GA 

along with the proposed modifications for SGA and MGA, improve the effectiveness of 

the algorithms and proof their successful implementation for solving complex nonlinear 

problems, as the parameter identification of fermentation process models. 
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