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Abstract: This paper investigates the performance of various Electromagnetic Field
Optimization (EFO) algorithms. Chaos maps are proposed to improve the performance
of EFO algorithms. Ten chaotic maps are incorporated in EFO – Chebyshev, Circle,
Gauss, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal and Tent. To compare the
performance of the constructed EFO algorithms, a case study of the identification of the model
parameters of a cultivation process model is studied. An experimental data set from E. coli
BL21(DE3)pPhyt109 fed-batch cultivation process is used. Based on the results of 30 runs
of each EFO, some statistical and InterCriteria analyzes are performed. As a result, the best
performing EFO algorithms are iterative EFO and tent chaotic map EFO. These algorithms
gave the best objective value (best and mean value) and had a good distribution of results.

Keywords: Chaotic maps, Electromagnetic field optimization, InterCriteria analysis, E. coli
BL21(DE3)pPhyt109 fed-batch cultivation.

Introduction
Metaheuristic algorithms, such as the Genetic algorithm, Particle Swarm Intelligence, Artificial
Bee Colony, etc. have been effectively employed to various complex tasks. Among the existing
metaheuristic algorithms, the Electromagnetic field optimization (EFO) [1] is a promising algo-
rithm, inspired by the behavior of electromagnets with different polarities and takes advantage
of a nature-inspired ratio, known as the golden ratio.

EFO algorithm has been applied in several areas [19, 30, 34, 38, 41, 48]. There are published
same improvements of the EFO [2–5, 49]. In the literature some results of improved EFO
are based on chaotic maps [17, 21, 24, 39, 40]. In the paper [39], an effective technique of
EFO algorithm based on a fuzzy entropy criterion is proposed, and in addition, a novel chaotic
strategy is embedded into EFO. A series of experiments significantly demonstrate the superior
performance of the proposed technique. Bouchekara [17] developed an improved version of
EFO based on chaotic maps and on a new mechanism. The obtained results are compared with
other well-known algorithms and show the ability of the improved EFO to solve efficiently
different problems. An improved diversification step with chaos in EFO is presented in [24].
The obtained results are compared with the results from other recent and improved algorithms
in the literature to show the performance and effectiveness of the proposed algorithm. Two
nonparametric statistical tests, the Wilcoxon rank-sum and the Friedman test, are performed to
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determine the significance of the results. Here, InterCriteria Analysis (ICrA) is applied instead
of well-known statistical tests.

ICrA has been developed with the goal to gain additional insight into the nature of criteria
involved in a multicriteria problem, and discover on this basis existing relations between the
criteria themselves [9]. It is based on the apparatus of the Index Matrices (IM) [7], and the
Intuitionistic Fuzzy Sets (IFS) [6,8] and can be applied to decision making in different areas of
knowledge.

The approach has been discussed in details in a number of papers devoted to different areas
of application [20, 44] and still finds scientific interest [18, 22, 45, 46]. In this paper ICrA has
been applied to compare the numerical results from EFO algorithm with 10 different chaotic
maps [20]. Ten different chaotic maps are incorporated into the EFO, namely, Chebyshev, Cir-
cle, Gauss, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal and Tent. The ten EFO algo-
rithms are applied to a model parameter identification problem of a non-linear E. coli fed-batch
cultivation process. Cultivation processes are characterized with complex, non-linear dynamic
and their modelling is a hard combinatorial optimization problem. E. coli is still the most
important host organism for recombinant protein production [47]. Cultivation of recombinant
micro-organisms e.g. E. coli, in many cases is the only economical way to produce pharma-
ceutical biochemicals such as interleukins, insulin, interferons, enzymes and growth factors.
Simple bacteria like E. coli are manipulated to produce these chemicals so that they are easily
harvested in vast quantities for use in medicine. As a case study, E. coli BL21(DE3)pPhyt109
fed-batch cultivation for bacterial phytase extracellular production [36] is used.

The rest of the paper is organized as follows. In Sections 2, 3 and 4 the InterCriteria Analysis,
Chaos theory and EFO background are presented, respectively. In Section 5 the used test case,
model parameter identification of an E. coli BL21(DE3)pPhyt109 fed-batch cultivation process,
is presented. Section 6 shows numerical results and discussion. Conclusions and directions for
future work are done in Section 7.

InterCriteria analysis
InterCriteria analysis, based on the apparatuses of IM [10–12] and IFS [6,14], is given in details
in [9]. Here, for completeness, the proposed idea is briefly presented.

Let the initial IM is presented in the form of Eq. (1), where, for every p,q, (1≤ p≤m,1≤ q≤
n), Cp is a criterion, taking part in the evaluation; Oq – an object to be evaluated; Cp(Oq) – a
real number (the value assigned by the p-th criteria to the q-th object).

A =

O1 . . . Oq . . . On

C1 C1(O1) . . . C1(Oq) . . . C1(On)
...

...
. . .

...
. . .

...
Cp Cp(O1) . . . Cp(Oq) . . . Cp(On)
...

...
. . .

...
. . .

...
Cm Cm(O1) . . . Cm(Oq) . . . Cm(On)

(1)

Let O denotes the set of all objects being evaluated, and C(O) is the set of values assigned by a
given criteria C (i.e., C =Cp for some fixed p) to the objects, i.e.,

O def
= {O1,O2,O3, . . . ,On}, C(O)

def
= {C(O1),C(O2),C(O3), . . . ,C(On)}.
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Let xi =C(Oi). Then the following set can be defined:

C∗(O)
def
= {⟨xi,x j⟩|i ̸= j &⟨xi,x j⟩ ∈C(O)×C(O)}.

Further, if x =C(Oi) and y =C(O j), x≺ y will be written iff i < j.

In order to find the agreement between two criteria, the vectors of all internal comparisons
for each criterion are constructed, which elements fulfill one of the three relations R, R and
R̃. The nature of the relations is chosen such that for a fixed criterion C and any ordered pair
⟨x,y⟩ ∈C∗(O):

⟨x,y⟩ ∈ R⇔ ⟨y,x⟩ ∈ R, (2)

⟨x,y⟩ ∈ R̃⇔ ⟨x,y⟩ /∈ (R∪R), (3)

R∪R∪ R̃ =C∗(O). (4)

For example, if “R" is the relation “<", then R is the relation “>", and vice versa.

For the effective calculation of the vector of internal comparisons (denoted further by V (C))
only the subset of C(O)×C(O) needs to be considered, namely:

C≺(O)
def
= {⟨x,y⟩| x≺ y & ⟨x,y⟩ ∈C(O)×C(O),

due to Eqs. (2)-(4). For brevity, ci, j = ⟨C(Oi),C(O j)⟩.

Then for a fixed criterion C the vector of lexicographically ordered pair elements is constructed:

V (C) = {c1,2,c1,3, . . . ,c1,n,c2,3,c2,4, . . . ,c2,n,c3,4, . . . ,c3,n, . . . ,cn−1,n}. (5)

In order to be more suitable for calculations, V (C) is replaced by V̂ (C), where its k-th compo-
nent (1≤ k ≤ n(n−1)

2 ) is given by:

V̂k(C) =


1, iff Vk(C) ∈ R,
−1, iff Vk(C) ∈ R,

0, otherwise.

When comparing two criteria the degree of “agreement” (µC,C′) is usually determined as the
number of matching components of the respective vectors. The degree of “disagreement” (νC,C′)
is usually the number of components of opposing signs in the two vectors. From the way of
computation it is obvious that µC,C′ = µC′,C and νC,C′ = νC′,C. Moreover, ⟨µC,C′ ,νC,C′⟩ is an
Intuitionistic Fuzzy Pair (IFP).

There may be some pairs ⟨µC,C′ ,νC,C′⟩, for which the sum µC,C′ + νC,C′ is less than 1. The
difference πC,C′ is considered as a degree of “uncertainty:

πC,C′ = 1−µC,C′−νC,C′ . (6)

In [37] five different algorithms for calculation of µC,C′ and νC,C′ are presented:

• µ-biased ICrA algorithm: This algorithm follows the rules presented in [13, Table 3],
where the rule for =,= for two criteria C and C′ is assigned to µC,C′ .
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• ν-biased ICrA algorithm: In this case the rule for =,= for two criteria C and C′ is
assigned to νC,C′ . It should be noted that in such case a criteria compared to itself does
not necessarily yield ⟨1,0⟩.

• Balanced ICrA algorithm: This algorithm follows the rules in [13, Table 2], where the
rule for =,= for two criteria C and C′ is assigned a half to both µC,C′ and νC,C′ . It should
be noted that in such case a criteria compared to itself does not necessarily yield ⟨1,0⟩.

• Unbiased ICrA algorithm: This algorithm follows the rules in [13, Table 1]. It should
be noted that in such case a criterion compared to itself does not necessarily yield ⟨1,0⟩,
too.

• Weighted ICrA algorithm: This algorithm is newly proposed and it is based on the
Unbiased for the initial estimation of µC,C′ and νC,C′ , however, at the end of it the values
of πC,C′ are proportionally distributed to µC,C′ and νC,C′ . Thus, the final values of µC,C′

and νC,C′ generated by this algorithm will always complement to 1.

In this research µ-biased ICrA algorithm is applied. The pseudo-code of the algorithm is pre-
sented below as Algorithm 1.

Algorithm 1 : µ-biased

Require: Vectors V̂ (C) and V̂ (C′)

1: function DEGREES OF AGREEMENT AND DISAGREEMENT(V̂ (C),V̂ (C′))
2: V ← V̂ (C)−V̂ (C′)
3: µ ← 0
4: ν ← 0
5: for i← 1 to n(n−1)

2 do
6: if Vi = 0 then
7: µ ← µ + 1
8: else if abs(Vi) = 2 then ▷ abs(Vi): the absolute value of Vi
9: ν ← ν + 1

10: end if
11: end for
12: µ ← 2

n(n−1)µ

13: ν ← 2
n(n−1)ν

14: return µ ,ν
15: end function

As a result of applying ICrA to IM A (Eq. (1)), the following IM is constructed:

C2 . . . Cm
C1 ⟨µC1,C2 ,νC1,C2⟩ . . . ⟨µC1,Cm ,νC1,Cm⟩
...

... . . . ...
Cm−1 ⟨µCm−1,C2 ,νCm−1,C2⟩ . . . ⟨µCm−1,Cm ,νCm−1,Cm⟩

,

that determines the degrees of “agreement" (µCi,C j) and “disagreement" (νCi,C j) between criteria
C1, ...,Cm [9].
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The analysis was carried out using the cross-platform software ICrAData [25]. The obtained
ICrA results are analyzed based on the proposed in [13] consonance and dissonance scale. For
ease of use the scheme for defining the consonance and dissonance between each pair of criteria
is presented in Table 1.

Table 1. Consonance and dissonance scale [13]

Interval of µC,C′ Meaning

[0.00-0.05] strong negative consonance (SNC)

(0.05-0.15] negative consonance (NC)

(0.15-0.25] weak negative consonance (WNC)

(0.25-0.33] weak dissonance (WD)

(0.33-0.43] dissonance (D)

(0.43-0.57] strong dissonance (SD)

(0.57-0.67] dissonance (D)

(0.67-0.75] weak dissonance (WD)

(0.75-0.85] weak positive consonance (WPC)

(0.85-0.95] positive consonance (PC)

(0.95-1.00] strong positive consonance (SPC)

Chaos theory
Chaos is defined as a phenomenon to study the random and unpredictable deterministic behavior
of the system. Chaos randomness is significantly distinct from statistical randomness in the
context of inherent ability for search space in order to improve optimization. The following
different types of chaotic maps (M1-M10) are used in the paper:

M1. Chebyshev map
According to [42, 43] the Chebyshev map is given by:

wn+1 = cos(t cos−1(wn)). (7)

M2. Circle map
The following expression represents the circle map [29]:

wn+1 = wn +β − (α−2π) mod (1), (8)

where α = 0.5,β = 0.2.

M3. Gauss map
The nonlinear Gauss map (also known as mouse map, [29]) can be expressed as:

wn+1 = exp(−αw2
n)+β , (9)

where α and β are real parameters.
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M4. Iterative map
This chaotic map is defined by [32]:

wn+1 = sin
(

απ

wn

)
, (10)

where α ∈ (0, 1).

M5. Logistic map
A logistic map explains the complex behavior without the randomness appeared from determin-
istic system which is defined as follows [31]:

wn+1 = cwn(1−wn), (11)

where w0 ∈ (0, 1), w0 /∈ {0, 0.25, 0.50, 0.75, 1}, c = 4 is called a chaotic sequence.

M6. Piecewise map
The piecewise map [32] is defined as follows:

wn+1 =



wn

k
, 0 < wn < k

wn− k
0.5− k

, k ≤ wn < 0.5

1− k−wn

0.5− k
, 0.5≤ wn < 1− k

1−wn

k
, 1− k < wn < 1

(12)

M7. Sine map
The mathematical formulation of sine map [23] is:

wn+1 =
α

4
(sinπwn), (13)

where 0 < α ≤ 4.

M8. Singer map
Singer map can be expressed as [15]:

wn+1 = µ(7.86wn−23.31w2
n + 28.75w3

n−13.302875w4
n), (14)

where µ ∈ (0.9, 1.08).

M9. Sinusoidal map
Mathematically, the sinusoidal map can be expressed as [31]:

wn+1 = αw2
t sin(πwn), (15)

where α = 2.3.
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M10. Tent map
Tent map is expressed by the following equation [33]:

wn+1 =


wn

0.07
, wn < 0.7

10(1−wn)

3
, wn ≥ 0.7

(16)

The advantages of chaos theory with non-invertible map scan carry out the overall search space
at a higher speed than stochastic search [26, 27] due to the non-repetition and ergodicity of
chaos [28]. It depends on searching of global optimum on chaotic motion properties such as
ergodicity, regularity and stochastic properties.

Electromagnetic field optimization
EFO is a population-based algorithm and each solution vector is represented by one group of
electromagnets (electromagnetic particle). In essence, EFO leverages the principles of elec-
tromagnetism to guide the search for optimal solutions. The interplay of attractive and rota-
tional forces allows the algorithm to effectively explore the solution space and converge towards
promising regions. The number of electromagnets of an electromagnetic particle is determined
by the number of variables of the optimization problem. Therefore, each electromagnet of the
electromagnetic particle corresponds to one variable of the optimization problem. Moreover,
all electromagnets of the same electromagnetic particle have the same polarity. However, each
electromagnet can apply a force of attraction or repulsion on the peer-electromagnets that cor-
respond to the same variable of the optimization problem.

According to [1], the EFO works as follows:

• First, a population of electromagnetic particles is generated randomly, and the fitness of
each particle is evaluated by a fitness function; then, particles are sorted according to their
fitness.

• Second, sorted particles are divided into three groups, and a portion of the electromag-
netic population is allocated to each group; the first group is called the positive field and
consists of the fittest electromagnetic particles with positive polarity, the second group is
called the the negative field and consists of the electromagnetic particles with the lowest
fitness and negative polarity, and the remaining electromagnetic particles form a group
called the neutral field, which has a small negative polarity almost near zero.

• Finally, in each iteration of the algorithm, a new electromagnetic particle is shaped and
evaluated by a fitness function. If the generated electromagnetic particle is fitter than
the worst electromagnetic particle in the population, then the generated particle will be
inserted into the sorted population according to its fitness and obtain a polarity based on
its position in the population; moreover, the worst particle will be eliminated.

This process continues until it reaches the maximum number of iterations or finds the expected
near-optimal solution.

EFO determines the position of each electromagnet of a generated electromagnetic particle as
follows: from the electromagnetic particles of each electromagnetic field (positive, negative,
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and neutral), three peer electromagnets are randomly selected (one electromagnet from each
field). Afterwards, the generated electromagnet gets the position and polarity (small negative
polarity) of the selected electromagnet from the neutral field and gets affected by the selected
electromagnets from the positive field (attraction) and negative field (repulsion) by random
force intensity. In other words, the generated electromagnet moves a distance away from the
bad solutions and approaches good solutions [1].

The coexistence of two opposite forces among electromagnets and the fact that the new solu-
tion is generated by moving a distance away from bad solutions and moving closer to the good
solutions cause effective search and fast convergence. However, to keep diversity and avoid lo-
cal minima, randomness is an indispensable part of EFO. Therefore, for some of the generated
electromagnetic particles (not all), only one of the electromagnets is changed with a randomly
generated electromagnet. The reason for applying randomness to some electromagnetic parti-
cles is that the existence of the random variables in all solutions will prevent finding a good
solution. However, applying randomness to some solutions brings diversity into the population
and prevents local minima [1].

EFO parameters setting plays a significant role in the performance of EFO. The most important
parameter of EFO is Nemp, which determines the number of electromagnetic particles of the
population. A small number of particles inside the population will cause finding local minima
instead of global minima due to the lack of knowledge about the search space. Additionally,
a large population will lead to slow convergence. In [1] is found out that a population smaller
than 50 tends to find local minima, and a population greater than problem dimension increases
the computational time.

The parameters Pf ield and N f ield parameters determine the percentage of the allocated popula-
tion to the each of the three groups with different polarities. Other important parameters of EFO
are Psrate (the probability of selecting electromagnets of the generated electromagnetic particle
from electromagnets of the positive field without changing them) and Rrate (the possibility of
changing one electromagnet of the generated electromagnetic particle with a randomly gener-
ated electromagnet). In Table 2 the proposed in [1] range of parameters values are presented.

Table 2. Range of the main EFO parameters

Parameters Value
Pf ield 0.05 - 0.1

N f ield 0.4 - 0.5

Psrate 0.1 - 0.4

Rrate 0.1 - 0.4

A large value for Pf ield increases the global search and slows down convergence, while a small
value for Pf ield reduces the global search and increases the local search [1]. Here, Eq. (17) is
used for calculation of the N f ield value:

N f ield =
1−Pf ield

2
. (17)

Based on a set of numerical experiments other EFO parameters are set to the following values:
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Nemp = 50;
Pf ield = 0.1;
N f ield = 0.45;
Psrate = 0.2;
Rrate = 0.4; and
Maxgen = 200 (maximum number of iterations).

EFO offers several key advantages as an optimization algorithm:

1. Exploration and Exploitation Balance: EFO effectively balances exploration of the solu-
tion space with exploitation of promising regions.

• The electric force drives particles towards areas of higher fitness (better solutions),
encouraging exploitation.

• The magnetic force introduces a rotational component, forcing particles to explore
different directions and preventing them from getting stuck in local optima.

2. Versatility: EFO can be applied to a wide range of optimization problems, including:

• Continuous optimization problems

• Discrete optimization problems

• Constrained optimization problems

3. Simplicity: The core concept of EFO is relatively easy to understand and implement.

4. Efficiency: In many cases, EFO can efficiently find high-quality solutions, especially for
complex optimization problems.

5. Robustness: EFO has shown robustness in handling various types of optimization land-
scapes and can often avoid getting trapped in local optima.

These advantages make EFO a valuable tool for solving challenging optimization problems
across diverse domains, including engineering, machine learning, and finance.

Case study
As a case study the model parameter identification problem of a non-linear fed-batch cultivation
process of E. coli BL21(DE3)pPhyt109 is used. The following differential equation system is
considered [16, 36]:

dX
dt

= µX− Fin

V
X , (18)

dS
dt

= −qSX +
Fin

V
(Sin−S), (19)

dP
dt

= qPX− Fin

V
P, (20)
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dV
dt

= Fin, (21)

where

µ = µmax
S

kS + S
,

qS =
1

YS/X
µ ,

qP =
1

YP/X
µ ,

(22)

and X is the biomass concentration, [g/l]; S is the substrate concentration, [g/l]; P is the product
concentration, [g/l]; Fin is the feeding rate, [l/h]; V is the bioreactor volume, [l]; Sin is the
substrate concentration in the feeding solution, [g/l]; µ , qS and qP are the specific rate functions,
[1/h]; µmax is the maximum specific growth rate, [1/h]; kS is the saturation constant, [g/l]; YS/X
and YP/X are the yield coefficients, [-].

For the model (Eqs. (18)-(22)) the parameters that will be identified are:

µmax, kS, YS/X and YP/X .

Let
Zmod

def
= [Xmod Smod Pmod] (model predictions for biomass and substrate) and

Zexp
def
= [Xexp Sexp Pexp] (known experimental data for biomass and substrate).

Then putting Z = Zmod−Zexp, we define the objective function as:

J = ∥Z∥2→min, (23)

where ∥∥ denotes the ℓ2-vector norm.

For the model parameters identification we use experimental data for biomass, glucose and
product concentrations of an E. coli BL21(DE3)pPhyt109 fed-batch cultivation process. The
detailed description of the process condition and experimental data are presented in [35].

Results and discussion
Numerical results
The proposed mathematical model consists of a set of four ODEs (Eqs.18-21) with three depen-
dent state variables x = [X S P] and four unknown parameters p = [µmax kS YS/X YP/X ].

The ranges of the model parameters are as follows:

0.1≤ µmax ≤ 0.9;
0.001≤ kS ≤ 0.5;
0.5≤ YS/X ≤ 10;
0.5≤ YP/X ≤ 10.

(24)

The numerical experiments were performed on Intel® Core™i7-8700 CPU @ 3.20 GHz, 3192
MHz, 32 GB Memory (RAM), with a Windows 10 pro (64 bit) operating system. The consid-
ered competing algorithms were implemented in Matlab R2019a. The mathematical model of
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E. coli was created in the Simulink R2019a environment. The solver options were the automatic
variable step size and ode45 (Runge–Kutta).

Series of 30 runs of each EFO algorithm are performed on the test case – cultivation model
parameters identification problem. The model parameters are estimated by 10 different EFO al-
gorithms using different chaotic maps, as follows: EFO algorithm M1 using Chebyshev chaotic
map, M2 – Circle chaotic map, M3 – Gauss chaotic map, M4 – Iterative chaotic map, M5 – Lo-
gistic chaotic map, M6 – Piecewise chaotic map, M7 – Sine chaotic map, M8 – Singer chaotic
map, M9 – Sinusoidal chaotic map, and M10 – Tent chaotic map. Due to the stochastic nature
of the applied algorithms series of 30 runs for each algorithm are performed. The obtained best
estimates of the model parameters, as well as the corresponding value of objective function J
are presented in Table 3. The best three results are marked in bold.

Table 3. Optimization results

Algorithm Objective µmax kS YS/X YP/X

chaotic map function value
M1 123.646 0.85 0.016 2.29 1.93

M2 122.805 0.71 0.004 2.27 1.98

M3 121.533 0.85 0.013 2.27 1.95

M4 121.546 0.78 0.008 2.28 1.96

M5 121.744 0.77 0.005 2.29 1.98

M6 122.688 0.87 0.015 2.21 1.89

M7 121.732 0.85 0.009 2.24 1.93

M8 123.155 0.82 0.008 2.32 2.02

M9 121.308 0.85 0.006 2.28 1.97

M10 122.294 0.88 0.016 2.30 1.99

As can be seen, the best objective function values are obtained based on EFO algorithm with
Gauss, Iterative and Sinusoidal chaotic maps. The worst results are observed for EFO with
Chebyshev and Singer chaotic maps. The performance of EFO with Logistic and Sine chaotic
maps is identical, as well as the performance of Circle and Piecewise chaotic maps.

A graphical comparisons can be used to establish the presence or absence of systematic de-
viations between the model predictions and the real measurements (experimental data). Such
quantitative measure is also an important evidence for the adequacy of the obtained models.
The model predictions of the state variables X , S and P, based on 10 estimated sets of model
parameters, are compared to the experimental data of E. coli fed-batch process in Figs. 1-3.

The graphical results show that the all models fit well the experimental data. Only model M2
(Circle chaotic map) show some different behaviour for the substrate dynamics.

To compare the performance of the 10 considered EFO algorithms statistical analysis of the nu-
merical results are performed. The data from 30 runs of the algorithms, e.g., the observed values
of the objective function J and the estimated values of the model parameters (µmax, kS, YS/X
and YP/X ), are analysed. The summary statistics of the results (mean values, SD, and the median
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of the estimated values) are presented as box plot diagrams in Fig. 4, Fig. 5 and Fig. 6.

Fig. 1 Experimental data and models predictions for biomass concentration
of an E. coli BL21(DE3)pPhyt109 cultivation model

The results show that the best J value observed for M3 is an outlier value. The best mean result
for J is achieved by M4. Given the data for J values, the algorithms M1, M2, M3, M8 and M9
do not produce results with a normal distribution. In the case of model parameters value data,
only a few EFO algorithms show a normal distribution of the estimates. The considered model
parameter identification problem is very complex. The mathematical model is highly non-linear
and the use of row experimental data makes the problem difficult to solve. This is why all EFO
algorithms exhibit such behaviour – the longer the box, the more dispersed the data and the data
distribution is positive or negative skewed (Figs. 5 and 6).
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Fig. 2 Experimental data and models predictions for substrate concentration
of an E. coli BL21(DE3)pPhyt109 cultivation model

Based on the numerical results (obtained objective function values) the algorithms M9, M4
and M3 find solutions with the higher accuracy. However, the statistical analysis show that the
M3 and M9 do not have good distribution of the estimates. So, the EFO algorithm M4, using
Iterative chaotic map, is the algorithm with the best overall performance.

Application of ICrA
To perform ICrA ten IMs are constructed. Each IM consists 30 columns (30 runs of EFO
algorithms) and 5 rows (results for J and four model parameters) as follows:

Input IMi =

Run1 Run2 . . . Run30
J . . .

µmax . . .
kS . . .

YS/X . . .
YP/X . . .

,

where the obtained estimations for J and model parameters are used; i = 1÷10, for M1 to M10.
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Fig. 3 Experimental data and models predictions for product concentration
of an E. coli BL21(DE3)pPhyt109 cultivation model

Fig. 4 Box plot with the results from the parameter identification – objective function value
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Fig. 5 Box plot with the results from the parameter identification – model parameters
µmax and kS

In the beginning, the ICrA is applied to the 10 IMi. As a result the following IMs are obtained:

Out put1 IMi =

J µmax kS YS/X YP/X
J 1 ⟨µJ,µmax ,νJ,µmax⟩ . . . . . . ⟨µJ,YP/X ,νJ,YP/X ⟩

µmax ⟨µµmax,J ,νµmax,J⟩ 1 . . . . . . ⟨µµmax,YP/X ,νµmax,YP/X ⟩
...

...
...

...
...

...
YP/X ⟨µYP/X ,J ,νYP/X ,J⟩ ⟨µYP/X ,µmax ,νYP/X ,µmax⟩ . . . . . . 1

,

To evaluate the correlations between the 10 EFO (M1-M10) the ICrA is again performed over
the IMs Out put1IMi. Thus, the considered ICrA criteria C are the 10 EFO algorithms – M1 is
C1, M2 is C2, etc. As a result an IM of the correlations between criteria Ci is obtained.
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Fig. 6 Box plot with the results from the parameter identification: model parameters
YS/X and YP/X

The resulting degree of “agreement" (µCi,C j) and “disagreement" (νCi,C j) between the criteria
are presented as IMs, as follows:

Out put2 IMµCi ,C j
=

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 1.00 0.36 0.44 0.51 0.78 0.47 0.42 0.58 0.49 0.56

M2 0.36 1.00 0.60 0.71 0.56 0.78 0.82 0.53 0.71 0.60

M3 0.44 0.60 1.00 0.67 0.38 0.51 0.51 0.40 0.42 0.58

M4 0.51 0.71 0.67 1.00 0.56 0.58 0.60 0.69 0.53 0.89

M5 0.78 0.56 0.38 0.56 1.00 0.60 0.60 0.53 0.64 0.51

M6 0.47 0.78 0.51 0.58 0.60 1.00 0.89 0.51 0.82 0.51

M7 0.42 0.82 0.51 0.60 0.60 0.89 1.00 0.53 0.84 0.51

M8 0.58 0.53 0.40 0.69 0.53 0.51 0.53 1.00 0.53 0.76

M9 0.49 0.71 0.42 0.53 0.64 0.82 0.84 0.53 1.00 0.49

M10 0.56 0.60 0.58 0.89 0.51 0.51 0.51 0.76 0.49 1.00
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Out put2 IMνCi ,Cj
=

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 0.00 0.58 0.49 0.47 0.13 0.44 0.53 0.38 0.44 0.38

M2 0.58 0.00 0.31 0.24 0.42 0.11 0.11 0.40 0.20 0.31

M3 0.49 0.31 0.00 0.29 0.51 0.38 0.42 0.53 0.49 0.33

M4 0.47 0.24 0.29 0.00 0.38 0.36 0.38 0.29 0.42 0.07

M5 0.13 0.42 0.51 0.38 0.00 0.27 0.36 0.38 0.24 0.38

M6 0.44 0.11 0.38 0.36 0.27 0.00 0.02 0.40 0.07 0.38

M7 0.53 0.11 0.42 0.38 0.36 0.02 0.00 0.42 0.09 0.42

M8 0.38 0.40 0.53 0.29 0.38 0.40 0.42 0.00 0.40 0.18

M9 0.44 0.20 0.49 0.42 0.24 0.07 0.09 0.40 0.00 0.42

M10 0.38 0.31 0.33 0.07 0.38 0.38 0.42 0.18 0.42 0.00

The obtained results are visualized in Fig. 7.
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Fig. 7 Representation of the results in the intuitionistic fuzzy interpretation triangle

The EFO algorithms that show similar performance, based on the ICrA results, are the following
(in descending order of similarity):

Group 1 M4-M10, M6-M7;

Group 2 M7-M9, M2-M7, M6-M9;

Group 3 M1-M5, M2-M6, M8-M10.

It is found that EFO algorithms M6 (Piecewise chaotic map) and M7 (Sine chaotic map) have
similar performance. These algorithms are related with the algorithms M2 (Circle chaotic map)
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and M9 (Sinusoidal chaotic map). Only EFO algorithm M3 (Gauss chaotic map) show perfor-
mance that is not related to the performance of the other 9 EFO algorithms. The higher degree
of agreement is found for the M4-M10. M4 (Iterative chaotic map) is the best performed EFO
algorithm and M10 (Tent chaotic map) is one of the algorithms that produces best mean J value.

The conducted analyses, both statistical and ICrA, made it possible to determine the best among
the ten EFO algorithms. M4 and M10 are selected as the algorithms with the best performance.

Conclusion
The performance of 10 different EFO algorithms is investigated. As a case study, E. coli
BL21(DE3)pPhyt109, a non-linear fed-batch cultivation process is used. Different chaotic maps
are incorporated in each EFO. The results obtained using Chebyshev, Circle, Gaussian, Iterative,
Logistic, Partial, Sinusoidal, Singer, Sinusoidal and Tent chaotic maps are compared. Based on
the performed statistical analysis and InterCriteria analysis, EFO with Iterative chaotic map and
EFO with Tent chaotic map are indicated as the best performed EFO algorithms.

As future work directions, the results obtained here can be confirmed (i) based on the appli-
cation of the chaotic EFO algorithms to another case study, or (ii) the same chaotic maps be
incorporated in another metaheuristic algorithm applied to the model parameter identification
of an E. coli BL21(DE3)pPhyt109 non-linear fed-batch cultivation process.
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