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Abstract: Chest X-ray and computed tomography scan play a major role in the diagnosis of 

lung diseases, including coronavirus disease (COVID-19). However, their cost, the obstacles 

to their implementation in health facilities in small settlements of developing countries, 

and the limitations of their use for daily assessment due to the risk of repeated radiation dose, 

greatly limit their application. In response to the search for safe, simple, rapid, non-invasive, 

and cost-effective promising alternatives for the diagnosis of COVID-19, researchers in the 

field are increasingly turning to the analysis of human respiratory sound signals, 

including cough, breathing, and voice sounds. This is due to the direct connection of the 

respiratory sound signals with the lungs. Despite the detection efficiency obtained in earlier 

related works, further studies are still needed on the ability of breath sounds to provide 

meaningful information about COVID-19. This study used 2660 samples of cough sounds 

(1 330 recordings from healthy subjects and 1 330 recordings from subjects infected with 

COVID-19) from the CoughVid dataset, to train models for the classification of 

the COVID-19 disease. An attempt has been made to classify COVID-19 using different 

machine-learning models. Temporal and spectral features were extracted from the amplitude 

spectrum of cough sound signals, and evaluated using a periodogram, and those with higher 

discriminative power were selected. 1862 cough sound recordings were used for training and 

798 cough sound recordings were used to test the model. On the test set, the final optimized 

model achieved classification accuracy, sensitivity, and specificity of 97.87%, 97.90%, 

and 97.85%, respectively. The experimental results of the study showed that the proposed 

method provides significant accuracy for classifying the COVID-19 disease, making it 

a reliable decision-support tool in healthcare settings where reverse transcription polymerase 

chain reaction is not available and test kits are scarce. 
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Introduction 
Coronavirus disease (COVID-19) is an infectious disease caused by a novel coronavirus called 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease has been 

identified as the cause of an outbreak of respiratory illness in Wuhan, Hubei Province, China 

in the beginning of December 2019 [2, 30]. COVID-19 disease now become one of the biggest 

killers with a total of 754 816 715 confirmed cases and 6 830 232 deaths reported by the World 

Health Organization (WHO) in February 2023 [31]. The numbers are still kept increasing.  

The symptoms can range from mild (or no symptoms) to severe illness. The most common 

symptoms include fever, dry cough and tiredness while the less common symptoms include 

aches and pains, sore throat, diarrhea, conjunctivitis, headache, loss of taste or smell, skin rash. 

The most serious symptoms include shortness of breath, chest pain or pressure, loss of speech 

or movement [17]. 
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Many diagnostic tests are available for the diagnosis of COVID-19. These diagnostic tests are 

largely based on four different techniques such as reverse transcription polymerase chain 

reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), lateral flow-hand-held 

single-use assay (LFA) and enzyme-linked immunosorbent assay (ELISA) [4, 19, 21, 23, 27]. 

Including all these and a range of molecular techniques are under development for the diagnosis 

and management of COVID-19 patients. However, the current molecular techniques for 

COVID-19 diagnosis have certain limitations such as the scarcity of RT-PCR test kits, the long 

wait for results, the low sensitivity, and they require high cost. Therefore, following the 

outbreak of COVID-19 disease, different scholars did and are in doing lots of contributions for 

early diagnosis of the disease using Chest X-ray (CXR) and computed tomography (CT) scan 

images processing along with machine learning and deep learning models. Belman-Lopez [7] 

performed detection of COVID-19 and other pneumonia cases. He performed a binary 

classification using X-ray images and convolutional neural networks (CNN), and claimed 

a classification accuracy of 99.17%. Mahesh et al. [18] also developed an optimal CNN model 

that can automatically detect COVID-19 and normal X-rays. They performed a binary case 

classification (COVID-19 or normal) and found a validation and training accuracies of 98.00% 

and 95.00%, respectively. Similarly, Saxena and Singh [25] followed a deep learning approach 

for the detection of COVID-19 from CXR images using CNN. They suggested a deep CNN 

that was trained on five open access datasets and had binary output (normal and COVID-19). 

Maximum detection accuracy of 97.00% was attained using the dataset of 9 472 CXR images 

from more than 13 870 patients. 

 

Besides to CXR images, CT scan images were also used for detection of COVID-19 disease 

[9, 13, 16, 29]. Kogilavani et al. [16] detected COVID-19 using lung CT scan images and 

various CNN architectures. They trained six different CNN models (Vgg16, DeseNet21, 

MobileNet, NASNet, Xception and EfficentNet) using a total of 3 873 CT scan images. 

Their experimental results showed that the Vgg16 architecture outperformed the others, 

with an accuracy of 97.68%. Rao et al. [24], on the other hand, used deep learning techniques 

on CT and CXR images to classify COVID-19. For classification, they used pre-trained deep 

CNN (ResNet50, InceptionV3, VGGNet-19 and Xception). When using CT scan images alone, 

the VGGNet-19 model outperformed the others, while Xception performed best when using 

CXR images alone, with accuracy of 87.00% and 98.00%, respectively. They obtained the best 

score through VGGNet-19 network which is 90.05% accuracy when using the average of the 

two modalities (CXR and CT images). Additionally, He et al. [13] developed simple-efficient 

deep learning methods for COVID-19 diagnosis using CT scan images. They performed 

a binary case classification (COVID-19 and non-COVID-19) and claimed F1 score of 0.85 

and an area under the curve (AUC) of 0.94. Furthermore, Walvekar and Shinde [29] 

performed classification of COVID-19 from pneumonia and other medical conditions 

using ResNet50. They obtained 96.23%, 97.15% and 95.60% of accuracy, sensitivity and 

precision values, respectively. 

 

Generally, CXR and CT scan provide a major role in the diagnosis of novel COVID-19 as other 

lung diseases. Moreover, chest CT outperformed lab testing in the diagnosis of COVID-19 

confirmed in a study of more than 1 000 patients published in the journal radiology [3]. 

However, it is difficult to deploy these imaging modalities in many rural healthcare settings of 

developing nations, and their cost provides a high barrier for many patients of the third world 

countries with certain financial limitations. Moreover, it is difficult to use them for a day-to-

day assessment of COVID-19 patients due to the risk of repeated dose of radiation which will 

prone patients for other harmful hazards. Hence, searching for safe, simple, fast, non-invasive, 

and cost-effective promising alternatives for COVID-19 diagnosis is still the ultimate goal of 
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researchers. Human respiratory sound signals including coughing, breathing, and voice sounds 

could be another promising tool for COVID-19 detection. Thesis is due to the fact that these 

signals have a direct connection with lungs. As a result, researchers have made significant 

contributions to COVID-19 detection through the processing of voice, cough, and breath sound 

data as well as various deep learning architectures and machine learning models [5, 8, 11, 

23, 26]. A pre-screening deep learning approach for COVID-19 classification utilizing  

a smartphone-based breathing recording was proposed by Alkhodari and Khandoker [5]. 

They used CNN and bi-directional long short-term memory (BiLSTM) units which perform 

classification using features extracted from the original recordings and from the mel-frequency 

cepstral coefficients (MFCC) as well as deep-activated features. Finally, their proposed deep 

learning approach claimed an overall classification accuracy of 94.58% and 92.08% using 

shallow and deep recordings, respectively. Rahman et al. [23] developed an intelligent 

application which can detect COVID-19 patients using cough and breath sounds. By using 

cough sound spectrogram images, accuracy, sensitivity and specificity for symptomatic and 

asymptomatic patients were found 96.50%, 96.42%, 95.40% and 98.85%, 97.01%, 99.60%, 

respectively. While by using the breath sound spectrogram images, the accuracy, sensitivity, 

and specificity for symptomatic and asymptomatic patients were found 91.03%, 88.90%, 

91.50% and 80.01%, 72.04%, 82.67%, respectively. Similarly, Evangeline et al. [11] used 

breath and cough sounds for the detection of COVID-19 using CNN. They pre-processed and 

converted audio samples into mel-spectrograms so that they used MFCC as input to the model. 

Final classification was performed using an ensemble CNN which reported accuracy and AUC 

values of 88.75% and 71.42%, respectively. Additionally, Schuller et al. [26] used deep neural 

networks (DNN) to identify COVID-19 from sounds of coughing and breathing. 

Similarly, Brown et al. [8], implemented an audio based-machine learning approach for 

automated diagnosis of COVID-19 using breath and cough sounds. They used cough and breath 

sounds for COVID-19 classification, and claimed an AUC of above 80.00% across all tasks. 

Furthermore, Despotovic et al. [10] performed detection of COVID-19 from breath, cough, and 

voice sound patterns. They obtained a preliminary result for binary case classification from 

cough sound patterns using wavelet scattering features, standard acoustic features and deep 

audio embeddings extracted from low-level representations, and achieved an accuracy, 

sensitivity and specificity of 88.52%, 88.75%, and 90.87%, respectively.  

 

Regardless of the classification or detection performances achieved in the earlier works 

discussed above, further investigations on the ability of respiratory sounds in providing useful 

information about COVID-19 are still needed, especially when dealing with comparison of 

various machine learning models. Most importantly, given the alarming increase in the number 

of confirmed positive COVID-19 cases worldwide, it is critical to develop a system capable of 

recognizing the disease from recorded sound signals. These are the motivating factors towards 

developing a system which can classify COVID-19 disease from the cough sound signals using 

machine learning techniques. Therefore, a cough sound-based binary classification (healthy or 

COVID-19) has been done in the study. 

 

Materials and methods 
For the successful classification of COVID-19 disease from cough sounds, we followed the 

procedure presented in Fig. 1. Dataset collection, signal pre-processing, feature extraction, 

feature selection and normalization, model training and hyperparameter optimization, and final 

data classification are all steps in the procedure. 
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Fig. 1 A general procedure for classification of COVID-19 disease from cough sounds 

 
Dataset collection 
Cough audio signal classification along with machine learning techniques have been 

successfully used for COVID-19 screening. Hence, different public datasets such as CoughVid, 

Coswara and Cambridge datasets are available for this purpose [23]. 

 

In this study, we used the cough sound samples found in CoughVid dataset [22] to train our 

models and to perform classification of COVID-19 disease. The CoughVid dataset contains 

a wealth of cough recordings obtained from health and COVID-19 subjects that can be used to 

train machine learning models for detecting the current global pandemic issue (i.e. COVID-19). 

Therefore, we took a total of 2 660 cough sound samples (1 330 records from healthy subjects 

and 1 330 records from COVID-19 infected subjects) to train the selected machine learning 

models.  

 

Data pre-processing 
All audio samples used in the study were converted into WAV audio format using a standard 

sampling rate and bit-depth. Sampling rate is the number of samples per second in a piece of 

audio measured in Hertz (Hz) or Kilohertz (KHz) while bit-depth relates to the dynamic range 

in audio, also called the dynamic range of the signal. It is the number of bits of information in 

every single sample. Therefore, in this study, all audio samples were converted to WAV audio 

format by resampling them at 22 KHz sampling frequency and 16-bit floating point bit-depth, 

a standard value for audio tasks [8]. Moreover, stereo recordings were converted to mono before 

further processing. In addition, we reduced ambient noise or non-cough sound segments using 

the spectral noise gating feature of audacity software (audacity v2.4.2.). 

 

Featurization  
Following the pre-processing step, some feature-related activities were carried out, 

including feature extraction, feature selection and feature normalization. One of the most 

important steps in the machine learning process, feature extraction, converts the input data into 

a set of discriminatory characteristics. Hence, a set of discriminatory time-domain and 

spectral-domain features of cough sound signals were extracted and used as inputs to train the 

machine learning models. All the temporal and spectral features were extracted or 

computed from the cough sound signals either by using the syntax or by implementing 

the required formula. 
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In this study a total of 16 features were extracted from the pre-processed cough sound signals. 

These features include mean, variance (VAR), standard deviation (σ), root mean square (RMS), 

skewness (skew), kurtosis (kurt), peak amplitude, average amplitude change (AAC), entropy, 

mean absolute value (MAV), zero crossing (ZC), mean frequency (MF), median frequency 

(MDF), band power, signal to noise ratio (SNR), signal to noise and distortion ratio (SINDR). 

The mathematical descriptions presented using Eqs. (1)-(12) demonstrate the formulae of some 

of the extracted features. In each of the equations, X indicates the input signal, 

N represents the number of signals, and P indicates the probability distribution of the signal. 

 

𝑋𝑚𝑒𝑎𝑛 =
∑ 𝑋𝑖
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Furthermore, feature selection was carried out prior to training models with the extracted 

features. This aids in the selection of the most useful features for classifying cough sound 

signals from healthy and COVID-19 diseased subjects. Statistical filter feature selection 

methods reduce highly correlated features in classification with no weights [1]. They are used 

to assess the significance of features using univariate statistics. As a result, the T-test filter 

method was used to rank all of the extracted features based on the final weight calculated for 

each feature. For binary case classification, the T-test feature selection method is the preferred 

statistical filter feature selection method. Furthermore, normalization of features was performed 

to avoid the possible occurrence of bias during final data training and classification. 

Generally, the feature extraction, selection and normalization steps were carried out using 

MATLAB software (MATLAB R2109b).  

 

Model training and hyperparameter optimization 

Before training the machine learning models, data splitting into training and testing sets was 

done using the hold-out method. Next, a common 10-fold cross-validation was applied and 

30% of the data were used for testing and the remaining 70% were used for training. 
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Following the data splitting, 10 supervised machine learning models (4 K-nearest neighbor 

(KNN), 3 ensemble CNN, and 3 support vector machine (SVM) models) were trained for 

classification of COVID-19 disease. KNN models classify the data based on the distance 

between the new object and the defined objects, while SVM models represent the training data 

as points using a flat separated space and mapped the new objects into space with the forecast 

category based on which side of the gap they fall [6]. Moreover, decision tree algorithms are 

used to classify the new tuples based on its values by traversing the tree until reaching the leaf 

that contains the class [6]. Following relevant model training, hyperparameter optimization was 

performed to improve model classification accuracies. The fundamental goal of machine 

learning is to develop a model that predicts a specific set of cases well and with high 

classification accuracy [12]. To obtain a more accurate model, we must use the model 

optimization technique. Optimization is the process of adjusting hyperparameters to minimize 

the cost function and achieve maximum performance [12]. This is because hyperparameters can 

have a direct impact on machine learning model training. 

 

As a result, the Bayesian optimization technique was used to optimize the trained machine 

learning models, resulting in improved classification performance. It is the most important 

optimization technique for hyperparameter optimization. We can use fitcauto, fitrauto, 

classification learner app, regression learner app, fit function, and bayesopt to implement 

Bayesian optimization. Following optimization, the classification accuracies of the optimized 

models were compared and a model that outperformed the others was chosen for further testing 

using the new dataset. Finally, the classification performances including sensitivity, specificity 

and accuracy of the selected optimized model were calculated using true positive (TP), 

false negative (FN), true negative (TN), and false positive (FP) rates through Eqs. 

(13)-(15). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (14) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (15) 

 

Results 

Data pre-processing 
Signal denoising is an important step in signal processing that involves removing artifacts that 

can corrupt the acquired or recorded signals. Therefore, we used the spectral noise gating 

available in audacity v2.4.2 to remove the unwanted signals. A sample of denoised cough sound 

signals of healthy and COVID-19 subjects are illustrated using Fig. 2. 

 

Feature selection, and normalization 
The extraction, selection and normalization of features were performed following the 

pre-processing step. Feature selection is used to select and retain only the most relevant features 

used for discriminating between the distinct classes (healthy and COVID-19). This prevents 

overfitting and makes the model more time-efficient while also cutting down on training time 

and computational costs. Only 12 features were chosen after using the T-test algorithm for 

feature selection, as is shown in Table 1 along with their rank. Furthermore, normalization of 

features has been done by subtracting each mean from the value of the feature and dividing it 

by the standard deviation. 
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(A) 

(B) 

Fig. 2 Denoised cough sound signals of (A) healthy subjects, and (B) COVID-19 subjects 

 

 

Table 1. List of selected features after applying feature ranking using T-test algorithm 

Feature Feature-domain T-test score Rank 

Entropy  Time 13.1056 1 

Peak amplitude  Time 12.0963 2 

Variance  Time 12.0334 3 

Standard deviation  Time 8.1304 4 

Root mean square  Time 6.4103 5 

Signal to noise and distortion ratio Time 5.1056 6 

Signal to noise ratio Time 5.0321 7 

Band power Spectral 4.1932 8 

Skewness  Time 4.0876 9 

Kurtosis  Time 4.0031 10 

Mean frequency  Spectral 3.1389 11 

Median frequency  Spectral 3.1204 12 

 

Data splitting and model training 
Data has been split so that 70% of the data will be used for training and the remaining 30% will 

be used for testing. As a result, a total of 1 862 cough sound signals were used to train various 

machine learning models, with 798 cough sound signals used to test the final optimized model. 

Fig. 3 depicts the classification performances of the 10 previously mentioned machine learning 

algorithms trained on the same data. An ensemble subspace KNN classifier provided the highest 

classification accuracy of 96.20% among all trained models. Fig. 4 also shows the number of 

correctly and incorrectly classified observations during the training of an ensemble subspace 

KNN classifier. 
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Fig. 3 Accuracy achieved on different machine learning models before optimization 

 

 

 

Fig. 4 The number of observations correctly and incorrectly classified 

by an unoptimized ensemble subspace KNN classifier 

 

Model optimization and evaluation  
Following the completion of the preceding steps, model optimization using the Bayesian 

optimization technique was performed to improve the accuracy of each model. 

The classification performances of the optimized machine learning models are shown in Fig. 5. 

After the optimization process, an ensemble subspace KNN classifier outperformed the others 

and still provided the best performance, with an accuracy of 96.60%. As a result, an ensemble 

subspace KNN model was chosen for further testing with the new data. Fig. 6 also shows the 

classification performance of the selected model after optimization. 
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Fig. 5 Accuracy achieved after optimization of different machine learning models 

 

 

 

Fig. 6 Confusion matrix demonstrating the performance of optimized ensemble subspace 

KNN classifier per each true class 

 

Model testing 
The final optimized model was tested for final evaluation using new or previously unseen data. 

The final optimized model was tested using 798 cough sound signals. During testing with the 

new dataset, the optimized model achieves the highest classification accuracy of 97.87%. 

Fig. 7 depicts the classification performance of the final optimized model using 

a confusion matrix. Therefore, the highest average classification accuracy of 97.87%, 

specificity of 97.85%, and sensitivity of 97.90% were obtained using the unseen dataset. 
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Fig. 7 Confusion matrix demonstrating test result of the final optimized model 

using unseen dataset 

 
Discussion 
Aside from standard molecular techniques, many researchers are attempting to develop robust 

techniques for early detection of COVID-19 disease by utilizing various image and signal 

processing techniques, as well as machine learning and deep learning models. Some challenges 

to getting imaging diagnostic approaches include the risk of repeated doses of harmful radiation, 

the cost of machines, and the inconvenient deployment in many healthcare settings. As a result, 

many researchers are investigating the use of respiratory sound signals in conjunction with 

artificial intelligence (AI) applications for COVID-19 detection. This is because respiratory 

sound signals have been identified as a promising tool for COVID-19 screening due to their 

direct association with the lungs [5]. As a result of the dramatic increase in the number of 

confirmed positive COVID-19 cases worldwide, it is highly encouraged to develop a system 

capable of detecting the disease based on respiratory sounds. Despite of the detection 

performances obtained in the earlier related works summarized using Table 2, further studies 

on the ability of respiratory sounds in providing essential information about COVID-19  

are still needed. 

 

In this study, an incredible attempt has been done for classification of COVID-19 from the 

cough sound signals using different machine learning models. A total of 2 660 cough sound 

records where used: 1 330 healthy and 1 330 COVID-19 records were collected from 

dataset [22] and used in the study. The collected cough sound records were normalized at  

a standard sampling rate of 22 KHz and 16-bit floating point bit-depth. Moreover,  

cancellation of the non-cough sound segments was performed using the spectral noise gating 

found in audacity software. Following signal collection and pre-processing, extraction of 

temporal and spectral features was performed. The spectral features were extracted from the 

amplitude spectrum of the cough sound signals being estimated using the periodogram function 

available in MATLAB. 
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Table 2. Comparison of the proposed study with related references 

Authors Applied techniques Accuracy, % 

Proposed method 
Ensemble subspace KNN optimized using Bayesian 

optimization  
97.87 

Rahman et al., 

2022 [23] 

Stacking CNN model based on logistic regression 

classifier meta-learner 
96.50 

Manshouri, 

2021 [20] 
SVM using power spectral density 95.86 

Imran et al., 

2020 [14] 
Deep transfer learning-based CNN 95.60 

Alkhodari and 

Khandoker, 

2020 [5] 

CNN using BiLSTM units 94.58 

Tena et al., 

2022 [28] 

Random forest using features extracted by 

Autoencoder 
90.00 

Islam et al., 

2022 [15] 
DNN consisting of three hidden layers 89.20 

Evangeline et al., 

2021 [11] 
CNN using Mel spectrograms 88.75 

Despotovic et al., 

2021 [10] 

Multi-layer perceptron (MLP) using wavelet 

scattering features 
88.52 

Brown et al., 

2020 [8] 

Audio-based machine learning using logistic 

regression classifier 
80.00 

Rao et al., 

2021 [24] 

VGG-13 architecture trained using a combination of 

binary cross entropy and focal losses 
78.30 

Schuller et al., 

2020 [26] 

DNN via Bayesian optimization combined with 

Hyper Band 
73.70 

 

Following feature extraction, feature selection was performed to select features with higher 

discriminatory power. The T-test feature selection method was used and 12 of 16 features were 

chosen to train machine learning models. Prior to model training and classification, 

features were normalized to make them nearly on the same scale. Next, splitting the whole 

dataset into training (70%) and testing (30%) has been performed. Hence, 1 862 cough sound 

records were used for training and 798 cough sound records were used for testing the model. 

Moreover, a common cross-validation (10-fold cross-validation) was performed to overcome 

the possible occurrence of overfitting. Finally, 10 machine learning algorithms from 3 families 

were trained for final classification of the data. The classification performances of each trained 

machine learning models have been shown in Fig. 3. 

 

Furthermore, each of the models was optimized for classification accuracy using the Bayesian 

optimization technique. Fig. 5 also shows the classification performance of each of the 

optimized models. An ensemble subspace KNN model outperformed all other models in both 

experiments before and after optimization. It has an accuracy value of 96.20% before 

optimization and 96.60% after optimization. Finally, when tested with new data, the optimized 

ensemble subspace KNN model achieves an overall accuracy of 97.87%, specificity of 97.85% 

and sensitivity of 97.90%. In general, the proposed study yielded promising results for  

COVID-19 classification using important temporal and spectral features extracted from cough 

sound signals. 
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The proposed study used only machine learning techniques to perform binary case classification 

of COVID-19 from cough sound signals. In the future, multiclass classification of COVID-19 

using respiratory sounds will be investigated. Furthermore, the classification performances of 

today's state-of-the-art deep learning techniques will be addressed in the future. 

 

Conclusion 
One of the main current research hotspots is improving a respiratory sound-based diagnosis of 

COVID-19 by combining signal processing and AI applications. An attempt was made in this 

study to analyze cough sound signals for further binary case classification of  

COVID-19 disease. 

 

Cough sounds from the CoughVid dataset were collected and converted to WAV audio format 

by resampling them at 22 KHz sampling frequency and 16-bit floating point bit-depth. 

Following pre-processing, the most discriminative features were chosen using the T-test 

method, and a total of 12 features were chosen to train different machine learning models. 

During classification, an ensemble subspace KNN model achieved the highest classification 

accuracy of 96.20%. In addition, the Bayesian optimization technique was used to improve the 

accuracy of trained models. The accuracy of an ensemble subspace KNN model has been 

increased to 96.60% after optimization. Finally, the accuracy of the optimized ensemble 

subspace KNN model in making predictions of new data was 97.87% with specificity of 97.85% 

and sensitivity of 97.90%. Overall, experimental results demonstrated that the proposed method 

provides a significant performance for the classification of COVID-19 disease, and thus it can 

be used as a decision support system in healthcare settings where RT-PCR is unavailable and 

test kits are scarce. 
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