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Abstract: Refractive errors, which include myopia, hyperopia, presbyopia, and astigmatism, 

are common vision problems that result in blurred vision when light rays are not focused 

correctly on the retinal plane. Diagnosis and classification of refractive errors are essential 

for providing appropriate corrective measures such as glasses or contact lenses. The key 

objective of this research is to establish an efficient and fast approach to identifying 

a refractive defect and categorizing them. Leveraging the capabilities of modern technology, 

we utilize a smartphone’s camera to capture pictures of the red reflex in the eye. 

During capturing, the photos are processed using recent image processing techniques to 

identify any irregularities or asymmetries that may indicate refractive errors. By comparing 

our method to other current models, we hope to illustrate the advantage of our 

Hereditary model, which combines a random forest and a convolutional neural network, 

in accurately diagnosing and classifying refractive errors. Additionally, the proposed 

approach can serve as a foundation in order to do additional research and development in 

machine learning and image processing methods improvements for the classification of 

ocular disorders. 

 
Keywords: Refractive error, Myopia, Red reflex, Image processing, Machine learning, 

Hereditary model. 

 

Introduction 
Refractive error is a common eye problem that alters how light enters one’s eye and causes 

blurry vision in order for the eye to concentrate and focus on things at different distances, 

the cornea and lens must work together to bend (refract) light rays onto the retina. However, 

this process is hampered in those with refractive errors, leading to vision impairment [16]. 

 

World Health Organization (WHO) estimates that 153 million people worldwide have untreated 

refractive defects. Even though uncorrected presbyopia presumably makes up a sizable fraction 

of the population, it is essential to highlight that they are not included in this number. 

Refractive errors are estimated to account for a total of 29.6% of total visual impairment in 

individuals aged 0-49 and 13.4% in those 50 and older, respectively, according to the National 

Blindness and Visual Impairment Survey of India 2015-2019 conducted by the Ministry of 

Health and Family Welfare, Government of India. 
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Blurred vision or failure of the eye to focus clearly on an object are two of its major symptoms. 

The two categories of refractive error detection are autorefraction and eccentric photo 

refraction [19]. Autorefraction is a modern, non-invasive method for calculating refractive 

errors in the eyes whereas the eccentric method involves shining a light source at an eccentric 

angle into the patient’s eye, and then using a camera to record the pattern of light reflected off 

the retina. Subjective, objective, and hybrid techniques can be used to measure and analyze 

refractive errors in the eyes [6]. 

 

Refractive errors are a severe worldwide health issue that has a huge impact on people all over 

the world. WHO estimates that there are 2.2 billion people in the world who suffer from a near- 

or far-vision impairment, highlighting the severity of the issue. Furthermore, 153 million of 

them suffer from refractive defects, which hinder their eyesight and everyday tasks. 

Both environmental and genetic factors play a role in the development of refractive errors. 

Regional variations exist in the prevalence of different refractive errors. Myopia and 

astigmatism are the most common among adults in South-East Asia, whereas hyperopia is more 

prevalent among both children and adults in the Americas. Failure to address these refractive 

errors can result in various adverse consequences [6]. Furthermore, untreated refractive errors 

can potentially result in more serious issues such as amblyopia (lazy eye) or even blindness, 

underscoring the importance of early detection and intervention [5]. 

 

The purpose of this research is to build a novel and accessible method for the detection of 

refractive errors in individuals using a smartphone’s camera and advanced technology. 

The study aims to utilize the smartphone’s camera flash to capture red reflex images in  

a dark environment. These acquired images will go through image processing techniques to 

enhance their features, enabling better visualization and analysis. Moreover, the study seeks to 

employ Machine learning (ML) methods to automatically select significant attributes from 

processed red reflex images. By using a classifier model, the ML algorithm will determine 

whether an individual has a refractive defect or a normal eye based on the extracted features. 

 

Review of the literature 
The usage of smartphones and advanced techniques in determining ocular disorders is 

demonstrated through a proof-of-concept smartphone application for cataract screening [2, 11]. 

By utilizing a smartphone with a camera and flash, it enables the general population to do 

early detection. As a result, practically anyone may perform self-screening, and it can also be 

utilized as a portable screening option in areas with few medical facilities or professionals. 

 

A systematic review of existing approaches demonstrates [14, 17], that a number of gadgets 

and mobile phone applications based on changed red reflexes are being used for 

community screening. This data was collected from Medline database devices described in the 

literature including ArcLight, Portable Eye Examination Kit (PEEK), iCam (Optovue), and 

RetinaScope. Smartphone-based applications include CRADLE (ComputeR Assisted Detector 

LEukocoria), MDEyeDetector, and soft fusion classifier leukocoria detector. EyeScreen has the 

potential to be a useful screening tool in the regions of the world where delayed retinoblastoma 

diagnosis is most prevalent. A proof of concept for future uses of machine learning as well as 

artificial intelligence in ophthalmic applications can be offered by the reasonably strong starting 

performance model for machine learning with restricted training datasets in this early-stage 

work [2]. 

 

When capturing images for diagnostic purposes, factors such as the angle of capture, distance, 

and illumination must be precisely controlled to ensure accurate and reliable results. A device 
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with adjacent viewing and illumination systems that are close enough to one another to allow 

reflex formation while staying far enough away to allow crescents can detect refractive errors 

just as well as a direct ophthalmoscope [3]. Pamplona et al. [13] demonstrated an interactive 

technique based on a brand-new near-eye optical probe and high-resolution display asserting 

that this is the sole technique for estimating wave front aberrations devoid of retinal illumination 

or moving elements. Astigmatism and high hyperopia can be detected more accurately with 

near visual acuity (NVA) than with distance visual acuity (DVA), but high myopia can be 

detected more accurately with DVA than NVA. In conclusion, the series of DVA and NVA 

tests performed better at the detection of serial refractive errors than one or both of the tests run 

separately [10]. 

 

Refractive defects, such as hyperopia, myopia, and astigmatism, can change the red reflex, 

resulting in an abnormally asymmetric and nonhomogeneous red reflex, as demonstrated by 

Jin et al. [10]. The colour of the reflected asymmetry that is discernible through the 

ophthalmoscope’s aperture can aid in locating the issue. Fageeri et al. [7] determined that 

identifying eye disorders is now an important concern of real-world medical issue. 

Early detection of eye conditions can stop complications and blindness [19] demonstrated the 

effectiveness of the residual network (REDNet), a neural network for detecting refractive errors 

that not only extracts the attributes of each image but also completely exploits the contextual 

relationship across images. In comparison to existing deep learning-based systems, 

the refractive error prediction method suggested in this study displayed great accuracy and the 

capacity to forecast spherical power, cylindrical power, and spherical equivalent. Fu et al. [9] 

demonstrated how trained gaze estimation model characteristics from convolutional neural 

network (CNN) provide information about human eyes. The Refractive Error Detection 

Network is built by combining CNN and recurrent neural network (RNN) for REDNet model, 

as demonstrated from multiple photorefraction images. To extract contextual links between 

feature sequences, estimate the spherical power, cylindrical power, and spherical equivalent, 

and effectively employ features that incorporated six-direction diopter information, 

long short-term memory (LSTM) was required. 
 

Materials and methods 
In this study, a comprehensive approach was adopted to develop an accurate refractive error 

detection model. The dataset was meticulously preprocessed and augmented to ensure optimal 

performance during training. To enhance the image’s features, the eye region with red-colored 

pupils was cropped, and a series of preprocessing steps were applied. Augmentation techniques 

were then used to normalize the dataset, enhancing its robustness. 

 

The core of the proposed methodology lies in the Hereditary model, a combination of two 

distinct models, which was applied to train the dataset. The Hereditary model effectively 

identified and classified images into two categories: normal eye and myopia-conditioned eye. 

This classification process was achieved through systematic workflow, as illustrated in Fig. 1. 

 

 
Fig. 1 Proposed methodology 

 

Each model in the Hereditary was trained individually, and their collective accuracy was 

evaluated once the models were applied to the dataset. The results showcased the model’s 

successful performance in accurately classifying refractive eye conditions. Metrics such as 
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accuracy, precision, recall, sensitivity, and specificity were used to gauge model effectiveness. 

Furthermore, the different models employed in the study were compared based on their 

testing accuracy. Through rigorous evaluation, the best-performing model was selected for the 

final classification process. 

 

Dataset 
A carefully selected dataset of 110 eye pictures was used to train in the current research and 

evaluate the model performance. The dataset comprised 65 images of normal eyes and 

45 images of eyes with myopia. To ensure diverse representation, the pictures were taken in 

various locations. Reflecting different subject refractive error conditions.  

 

The images were captured using a “Samsung Galaxy A22” smartphone with a 12 megapixels 

camera and an image resolution 3000×4000 pixels. The smartphone’s flash was enabled during 

the image capture process to illuminate the subject eye. The camera distance was standardized 

at 1.5 meters as shown in Fig. 2, and the angle was adjusted between 10 to 20 degrees, 

depending on the subject height. 

 

 

Fig. 2 Image captured at 1.5 m distance 

 

The dataset consisted of images collected from children attending Bharatiya Grameen Mahila 

Sangh (BGMS) Shishukunj Vidyalaya School and adults from various locations, 

including BMS College of Engineering, Ramaiah Hospital, friends, and family. Among these, 

68 photos were taken of children aged 7 to 15, and 42 images were taken of individuals older 

than 18. 

 

During the training of the dataset, certain images were excluded for the following reasons: 

● Individuals who didn’t pass an eye test were eliminated to ensure accuracy and 

reliability. 

● Images of individuals with other eye disorders, such as cataract or hyperopia were also 

excluded to focus solely on refractive error detection. 

● Images with blurred or obscured red eyes were not considered to maintain data quality 

and consistency. 

 

By meticulously curating the dataset and including a diverse range of eye images, this study 

ensures a robust and reliable training process for the model, promising accurate refractive error 

detection and assessment. 
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Image preprocessing 
The preprocessing step plays a crucial role in refining the image data for accurate analysis and 

model training. It aims to eliminate noise and variations while improving the overall 

image quality. To achieve this, several essential processes were employed. 

 

Initially, for image clarity, improvement was performed with image enhancement procedures. 

Additionally, image normalization and non-uniform intensity correction were implemented to 

eliminate artefacts and ensure more precise processing steps. 

 

To focus specifically on the eye region, the images were cropped and resized to a standardized 

dimension of 224×224 pixels, so only the eyes are visible (see Fig 3). Techniques for data 

augmentation were employed to reduce potential overfitting concerns, enhancing the model’s 

ability to generalize to unseen data. Image enhancement procedures, including adjustments to 

brightness, contrast, and sharpness, were utilized to further improve the visual quality 

of the images. 

 

 

 

 

A)  B) 

Fig. 3 A) Haar cascade classifier detecting face and eyes; 

B) eyes image, cropped and resized to 224×224 pixels. 

 

The distribution of the data was made consistent by normalizing the images, which also made 

it possible for the training phase convergence to occur more quickly. 

 

To build robust training models capable of handling diverse real-world scenarios, the dataset 

underwent normalization process that followed normal (statistical) distribution. This approach 

aimed to take into account differences brought on by difficult lighting situations and to take 

photographs that may not have been properly taken in such situations. 

 

The preprocessing steps undertaken in this study collectively contribute to enhancing the 

accuracy and resilience of the model, enabling effective refractive error detection even in 

instances of noise and challenging environmental conditions.  

 

Feature extractor and classifier 
The Hereditary model used in this study is an effective combination of CNN and RF. CNN is a 

commonly used approach for picture classification and identification applications, providing 

effective feature representation in the field of analysis of images. However, CNN can be 

computationally intensive during training, resulting in longer training times [20]. 

The CNN architecture utilized in this model consists of multiple layers designed for feature 

extraction and classification tasks. The input layer expects images with a specific height, width, 

and three color channels corresponding to the RGB system. This is followed by three sets of 

convolutional layers, each set comprising a convolutional layer with ReLU activation function 

and subsequent max pooling layer to down sample the feature maps. The first convolutional 

layer applies 32 filters, the second applies 64 filters, and the third applies 128 filters. 
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After the convolutional layers, the feature maps are flattened into 1D vector using a flattened 

layer, followed by a fully connected layer with 128 neurons and a ReLU activation function. 

Finally, the output layer consists of a single neuron with a sigmoid activation function, suitable 

for binary classification tasks, producing the probability of the input image belonging to the 

positive class. 

 

In contrast, RF is renowned for its quick training speed and good classification accuracy, 

making it a desirable option. RF addresses the issue of excessive fitting that may arise with 

individual decision trees and exhibits robustness to noise and anomalies. It efficiently handles 

large datasets and performs effectively [4, 5, 18]. RF classifier is instantiated with 

100 decision trees using the RF classifier class from the scikit-learn library. This classifier is 

trained on features extracted from the CNN model. 

 

In the hybrid model, the output layer of CNN, which comprises extracted features, is passed on 

to the RF classifier for final classification. CNN operates by employing multiple filters on 

specific regions of the image, detecting fundamental features such as edges and corners. 

Secondary pooling layers further extract essential features after each convolutional layer, 

enhancing the representation. RF acts as a complementary classifier, combining the strengths 

of CNN’s feature extraction with its own speedy and accurate classification capabilities. 

This fusion of CNN and RF exploits the advantages of both models, leading to improved 

performance speed and reduced risk of overfitting. 

 

The hybrid model effectively leverages CNN’s ability to automatically extract relevant features 

and utilizes RF’s efficiency in classification. By doing so, it mitigates the prolonged training 

time typically associated with CNN, while achieving enhanced classification accuracy. 

This approach proves highly valuable tasks in image analysis, allowing faster and more accurate 

predictions without compromising the quality of results. 

 

Results and discussion 
Image preprocessing 
An effective method for locating particular objects or features in photos is the Haar cascade 

classifier [12]. It works very well at identifying faces and eyes in photos. In preprocessing stage, 

cropped photos underwent crucial transformations (Fig. 4). 

 

 A) resizing into 255×255 pixels 

 B) data augmentation: brightness 

 C) data augmentation: sharpness 

 D) data augmentation: contrast 

 E) normalized image 

Fig. 4 Preprocessing procedures performed on the images 
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Photos were scaled to a normalized range of 0 to 1 and resized to 255×255 pixels, 

ensuring consistency in the input data. In image enhancement and manipulation, brightness, 

contrast, and saturation are crucial factors. It was advantageous to increase brightness for 

pictures that were either poorly contrasted or taken in low light. To highlight details and boost 

visual quality overall, sharpness augmentation was effective with fuzzy photos. It was helpful 

to utilize contrast enhancement to enhance an image’s texture and features as well as the visual 

separation of items [13]. 

 

Finally, the standardization procedure, which involves taking the mean and dividing it by the 

standard deviation, was used to conduct normalization. By ensuring that the input data has 

consistent scales, normalizing images may speed convergence during training and increase 

generalization. 

 

Performance evaluation 
In the performance evaluation phase, a Hereditary model comprising the CNN-based RF model 

was employed to assess its effectiveness compared to individual models [18]. The scikit-learn 

library’s training-test split method was utilized, dividing the data into an 80:20 ratio, with 80% 

allotted for training and 20% for testing. 

 

The Hereditary model, a combination of the CNN and RF models, exhibited remarkable 

optimization compared to running the models separately. The dataset of 110 images was 

preprocessed and normalized, ensuring consistency in the pixel values between 0 and 1. 

 

The CNN model evaluation dataset was divided into training, validation, and testing sets with 

a ratio of 6:2:2 using an equal number of normal and myopic eye photos (a total of 110 images). 

The data was divided with the help of the scikit-learn selection model. Data was input into the 

CNN model once the dataset was sampled, and the training accuracy and loss were 

then determined. For binary classification in the CNN model, sigmoid activation was used, 

which employs an Adams optimizer with a learning rate of 0.001 was used. The binary 

cross-entropy loss function was chosen to predict losses. 

 

During the initial training phase, the Hereditary model achieved a training accuracy of 0.45 

with a loss of 1.934 and a validation accuracy of 0.50 with a loss of 0.95. As the training 

progressed with increasing epochs, both accuracy and loss experienced significant 

improvements. Ultimately, the Hereditary model attained an impressive training accuracy of 

1.0 with a minimal loss of 0.019. 

 

For the testing phase, the Hereditary model, incorporating both the CNN and RF components, 

demonstrated outstanding performance, achieving a testing accuracy of 0.9545. These results 

highlight the effectiveness of combining the strengths of CNN and RF to enhance predictive 

capabilities and ultimately yield a highly accurate and reliable Hereditary model for the image 

classification task. 

 

In the individual models, the CNN achieved a training accuracy of 0.80, while the RF achieved 

a testing accuracy of 45.45%. However, the real power of the Hereditary model, 

which combined both CNN and RF, was demonstrated by its remarkable training accuracy of 

1.0 and an impressive testing accuracy of 95.45%. This significant improvement in accuracy 

highlights the effectiveness of the Hereditary approach, leveraging the strengths of both models 

to achieve superior results in image classification. The accuracy of different models is given 

in Table 1. 
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Table 1. Accuracy of different models 

 Training accuracy Testing accuracy 

CNN Model 84.73% 54.00% 

RF n.a. 45.00% 

CNN + RF 100% 95.45% 

 

The training loss graph with accuracy and validation loss is shown in Fig. 5 and Fig. 6. 

This model showed much improvement in the accuracy with CNN and trained faster using the 

RF classifier. 

 

 
Fig. 5 Training loss graph with accuracy 

 

 
Fig. 6 Validation loss graph 

 

The calculations for accuracy, precision, recall, F1 score, sensitivity, specificity, and receiver 

operating characteristic (ROC) curve were performed following standard methodologies as 

described in the literature [1, 8, 15]. Accuracy was calculated as the ratio of correctly predicted 

instances to the total number of instances. Precision, recall, and F1 scores were computed based 

on the confusion matrix, which summarizes the counts of true positive, true negative, 

false positive, and false negative predictions. Sensitivity (true positive rate) and specificity 

(true negative rate) were calculated from the confusion matrix. A confusion matrix for the 
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Hereditary model is shown in Fig. 7. The following formulae in Eq. (1) to Eq. (6), 

represent the performance measures. In all equations TP is true positive, FN – false negative, 

TN – true negative and FP – false positive. 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

F1 score =
2×(Precision×Recall)

(Precision+Recall)
 (4) 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (6) 

 

 

Fig. 7 Confusion matrix for Hereditary model 

 

The overall performance matrix for the model is shown in Table 2. The Hereditary model 

exhibited outstanding accuracy, achieving a remarkable accuracy rate of 95.45%. 

This emphasizes its capability to make accurate predictions across both classes and highlights 

its suitability for tasks that demand high precision in decision-making. Furthermore, 

the Hereditary model excelled in precision, attaining a perfect precision score of 100%, 

indicating its minimal tendency for false positive predictions. The high recall of 90.90% 

showcases the model’s ability to effectively capture true positive instances, enhancing its 

reliability in correctly identifying positive cases. The F1 score, harmonizing precision 

and recall, reinforces the Hereditary model’s robust performance, registering an impressive 

value of 95.23%. The acquired sensitivity and specificity are, respectively, 90.90% and 72.72%. 
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Table 2. Performance metrics of the Hereditary model 

Model Hereditary model 

Accuracy (%) 95.45 

Precision (%) 100 

Recall (%) 90.90 

F1 score (%) 95.23 

Sensitivity (%) 90.90 

Specificity (%) 72.72 

 

The receiver operating characteristic (ROC) curve takes both true outcomes from the test set 

and predicted possibilities from the trained model for positive class. The area under curve 

(AUC) taken for a random classifier is 0.5 and the value racing 1 indicates a perfect classifier. 

In this Hereditary model, the ROC-AUC obtained for the given dataset is about 0.94. 

Fig. 8 indicates the classifier’s ability to discriminate between positive and negative instances. 

 

 

Fig. 8 Receiver operating curve for the model 

 

Comparison with other models 
In this work, the pre-trained models were systematically compared to several other models that 

complied with reference publications. The evaluation involved analyzing different models and 

their respective performance metrics. All the models were trained using a similar preprocessed 

dataset to ensure a fair comparison. This standardized preprocessing aimed to minimize bias 

and enable a direct comparison of model performance. By employing consistent preprocessing, 

the model’s strengths and weaknesses were assessed accurately. Ultimately, this approach 

facilitated informed decisions regarding model selection and Hereditary construction, 

leading to meaningful conclusions about overall system performance. For instance, Resnet was 

trained with 48 epochs, whereas visual geometry group (VCG) was trained with 10 epochs. 

The outcomes of this model comparison, as well as their performance metrics, 
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are presented in Table 3, shedding light on the strengths and weaknesses of each model based 

on their respective performance metrics. 

 

Table 3. Performance metrics of the Hereditary model 

Model Accuracy (%) Precision (%) Recall (%) F1 score (%) 

Hereditary model 95.45 100 90.90 95.23 

Resnet 41.30 14.06 37.50 20.45 

Densenet 63.64 71.00 29.00 41.00 

Mobilenet 45.45 25.00 20.00 22.00 

VGG 62.50 38.54 45.83 38.94 

 

From Table 3, it is evident that CNN architecture is commonly employed in eye disease 

recognition tasks, but the accuracy achieved was generally below 90%. However, the usage of 

the Hereditary model in the current work distinguishes it, which yielded a significantly higher 

accuracy of 95.45%.  

 

In contrast, the Resnet architecture exhibited comparatively lower performance metrics. 

While its accuracy stood at 41.30%, its precision, recall, and F1 score were markedly lower, 

at 14.06%, 37.50%, and 20.45%, respectively. This indicates a challenge in capturing true 

positive instances and maintaining precision, which could be attributed to issues related to 

feature extraction or model complexity. 

 

Densenet showed an accuracy of 63.64%, a precision of 71.00%, a recall of 29.00%,  

and an F1 score of 41.00%. The better precision demonstrates its capacity to categorize positive 

instances accurately, but the relatively lower recall implies there is still potential for 

development in terms of precisely capturing all actual positive instances. 

 

There were differences in performance between the Mobilenet and VGG architectures. 

Both models showed lower precision, recall, and F1 scores, with Mobilenet achieving an 

accuracy of 45.45% and VGG reaching 62.50%. Complex feature handling difficulties or class 

imbalances may be the reason for these outcomes. 

 

Among all the studies mentioned in the table, our results demonstrate a more accurate and 

precise classification of myopia and normal eye conditions. The Hereditary model’s exceptional 

performance showcases its potential for improving eye disease recognition and further 

emphasizes the importance of combining CNN and RF models to enhance classification 

accuracy in this domain. 

 

Conclusion 
Capturing images through smartphones is a non-invasive, time-efficient process that easily 

integrates into an individual’s daily life. This unique blend of accessibility, accuracy, and user-

friendliness underscores the disruptive potential of this approach. This method takes 

smartphones’ widespread use to undertake precise refractive error evaluations conveniently and 

cost-effectively. It is not only a technical advancement but a societal one, promising to redefine 

how we approach vision diagnostics and opening new horizons for improved eye care 

accessibility worldwide. The proposed Hereditary model, leveraging a combination of CNN 

and RF designs, exhibits remarkable performance in detecting refractive errors, specifically 

myopia, from red reflex eye images. Before feeding the images into the CNN for feature 
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extraction, various preprocessing techniques were applied to enhance the input data quality. 

This preprocessing step significantly contributed to the model’s accuracy and robustness. 

 

Through the implementation of the Hereditary model, the study successfully classified different 

types of refractive errors and precisely predicted whether an eye has myopia or is considered 

as normal. In comparison to other models utilized in this research, the Hereditary model 

outperformed them, achieving the highest accuracy of 95.45% for distinguishing between 

normal and myopic conditions. The model’s overall performance metrics, including precision, 

recall, and F1 score, also demonstrated superior efficiency and effectiveness. 

 

One of the most appealing aspects of this method is its versatility. It not only surpasses existing 

CNN-based ocular disease classification models but also demands less processing time, 

making it more efficient and suitable for real-time applications. Furthermore, the model can be 

easily extended to tackle other types of medical image-based disease classification tasks, 

showcasing its potential for broader medical applications. Moreover, the study explores the 

possibility of applying ocular image segmentation to further improve the model’s accuracy 

and specificity. With a diverse set of images, the model could be extended to classify other 

refractive errors with comparable success. 

Overall, this proposed Hereditary model presents a significant advancement in the field of eye 

disease recognition. Its implementation promises to be immensely beneficial for medical 

experts, revolutionizing eye illness diagnostics. While the model has already demonstrated 

impressive performance, continuous research and exploration hold the potential for further 

advancements and the expansion of its application in the future. 
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