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Abstract: Electromyography (EMG) is a fundamental tool in diagnosing neuromuscular 

disorders (NMD). Due to the complex nature of EMG signals, different approaches, based on 

artificial intelligence and machine learning, were developed for EMG signal analysis and 

NMD diagnosis. Considering the critical role of maximum voluntary contraction (MVC) as a 

fundamental metric in assessing muscle fatigue, in this work, classification of simulated 

surface EMG (sEMG) into MVC levels is performed. Unlike previous studies, 

which focus primarily on binary classification of fatigue and non-fatigue states, our approach 

employs a deep convolutional neural network for the classification of sEMG signals into ten 

MVC levels, where the model outputs categorical predictions, with each class representing a 

specific MVC level. sEMG signals were generated using a computer muscle model that we 

developed using MATLAB, which allows for greater control over variability, ensuring 

robustness and generalizability of the model. The obtained results demonstrate that the model 

achieved high performance in differentiating between the ten classes (MVC levels), with an 

accuracy, F1-score, recall, and precision of 88.88%, 88.75%, 88.80% and 88.86%, 

respectively. These findings reveal that the model can accurately differentiate across 

MVC levels, indicating a potential method for accurate assessment of muscle fatigue intensity. 
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Introduction 
Electromyography (EMG) signals are used for diagnosing patients with neuromuscular 

disorders (NMD) [31]. EMG data can also help guide therapy decisions and provide crucial 

information about the course of various disorders [31, 32]. Along with visual analysis of EMG 

signals by an experienced electrophysiologist to detect abnormalities, attempts are being made 

to develop algorithms for automated recognition of neuromuscular diseases [32]. 

 
Muscle fatigue is one of the common symptoms of NMD that can have serious consequences 

in a person’s life. The maximal voluntary contraction (MVC) test is a general way to detect this 

symptom [11], where the maximum force or force generated over a voluntary contraction 

is measured. Practitioners can assess the level of muscle fatigue and the severity of the symptom 

by analyzing EMG signals during MVC. Therefore, EMG signals are an important tool for 

identifying and monitoring the muscle fatigue in NMD patients, as well as guiding treatment 

decisions to improve their quality of life [11, 34].  

 

Accurate medical diagnosis is essential for effective treatment and avoiding 

major repercussions. Analyzing data from different sources using expert systems can help 

reduce human error and enhance outcomes [14, 15]. Due to the growth of medical practice and 

the difficulty of diagnosis, artificial intelligence (AI) and machine learning (ML) algorithms 

have attracted a lot of attention in the field of healthcare. Development of a framework using 

these algorithms can predict early disease diagnosis [10]. These algorithms have the ability to 

aid in disease diagnosis and risk estimate through analyzing huge amounts of data and 

identifying patterns [6, 14]. The rapid growth of AI and the growing availability of massive 

datasets should change health and life in general [23].  

 

Recently, the applications of EMG classification using AI include those working on different 

NMDs diagnoses such as amyotrophic lateral sclerosis [8], traumatic spinal cord injury [17], 

neuropathy and myopathy [32] and Parkinson’s disease [1]; and those who work on movement 

simulation and detection like hand motions [7, 28], and finger movements [30]. 

Many approaches were proposed to classify EMG data, in particular support vector machine 

(SVM) [1, 29, 30], neural networks [8, 32], tunable Q-factor wavelet transform [28] and 

deep learning (DL) models [7, 17]. For the muscle fatigue diagnoses, Song et al. [27] proposed 

a wireless device that uses wearable EMG sensors and a frequency domain-based approach to 

detect muscle fatigue in real time. ML algorithms were widely used for muscle 

fatigue detection. Where different ML techniques were employed by Karthick et al. [13] and 

Zhao et al. [35], SVM by Ramos et al. [25] and Liu et al. [16], and artificial neural network 

(ANN) by Hickman et al. [11]. DL models were also used, either for the fatigue detection as 

Moniri et al. did [22], or for the fatigue level determination through the detection of muscle 

contraction intensity as in the works of Bu and Morita [4] and Hajian et al. [9]. 

 

MVC levels of EMG signals were used in many biomedical applications [3], particularly in the 

assessment of muscle fatigue [5, 21]. Although ML models have claimed decent performance 

for surface EMG (sEMG) signal classification, DL algorithms have recently gained popularity 

in the literature [4, 7, 9, 17, 22]. Because they automatically learn crucial features, they tend to 

perform better [12]. In this study, we develop a robust classification system for simulated 

sEMG signals, capable of accurately quantifying and distinguishing different levels of MVC. 

sEMG signals used in this study were simulated for contraction levels of 10% to 100% MVC 

by a step of 10% using a MATLAB program that we previously developed [19]. 

The classification was performed using a convolutional neural network (CNN) based DL 

algorithm to ensure the accuracy of the predictions. This study aims to contribute to the field of 
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muscle fatigue assessment by providing a robust automated method to differentiate between 

different levels of contraction, enhancing the ability of clinicians to assess muscle fatigue and 

monitor changes in real time, by providing an objective and accurate method instead of relying 

on subjective assessments and traditional electromyography techniques. Understanding MVC 

levels is crucial because they serve as benchmarks for muscle performance; monitoring changes 

in MVC can indicate the progression of fatigue and recovery states. This may facilitate early 

detection of fatigue, address current limitations in clinical practice, and improve patient 

management and treatment strategies, by providing a valuable diagnostic tool to determine the 

severity of the condition and enhance our understanding of muscular health. 

 

Materials and methods 

Simulation model 
In this study, a MATLAB model, we previously developed in [19] and provided in [36], was 

used to generate sEMG signals. The model simulates the detection of sEMG above an elliptical 

muscle within a cylindrical limb, namely bone, muscle, fat, and skin (Fig. 1). The generated 

simulated signals were sampled at a frequency of 2048 Hz and had a duration of 5 s. 

The fundamental model parameters comprised an elliptical muscle with a cross section of 

30 mm by 20 mm that contained 120 motor units (MUs) uniformly distributed. The number of 

muscle fibers within each MU was linked to its size: the diameters of the MUs were distributed 

according to Poisson’s law in the range of 2-8 mm, with an average of 6 mm. The smallest MU 

innervated 63 fibers, while the largest innervated 1005 fibers. The conduction velocity of all 

MUs ranged between 2.5 m/s and 5.5 m/s, with an average of 4 m/s and a standard deviation of 

0.75 m/s [19]. 

 

 

Fig. 1 The model used to simulate the sEMG signals 

 

During the signals generation, longitudinal single differential (LSD), longitudinal double 

differential (LDD), and normal double differential (NDD) spatial filters were used. 

According to the literature, non-invasive recording of sEMG signals is based on electrodes 

configured in spatial filters that improves selectivity in sEMG signal detection by reducing 

detection volume and limiting interference from surrounding muscles. These filters use various 

aspects of spatial filtering, such as transverse, depth, and longitudinal selectivity, to boost 

crucial sEMG signal features while attenuating undesirable noise, resulting in improved muscle 

activity detection accuracy [20]. The electrodes were placed halfway between the innervations 

zone and the distal tendon, and different electrode shapes and inter-electrode distances 
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were used. Two forms of electrodes were considered for the LSD and LDD filters: a rectangular 

shape of 1 mm wide and 10 mm long, with inter-electrode distances (IED) of 5 and 10 mm, 

and a circular shape of 1 mm diameter, with IED of 5 and 10 mm. For the NDD filter, 

circular electrodes with a diameter of 1 mm and IED of 5 and 8 mm were used. 

To show the effects of different filters and electrodes on the simulated sEMG signal for a same 

parameters combination, we present Fig. 2, which illustrates both the time-domain 

representation (1 s segment) and the frequency spectrum of the same simulated sEMG signal 

recorded with various spatial filters. The frequency spectra demonstrate how changes in spatial 

filtering affect not just the morphology of signals but also their frequency characteristics. 

Furthermore, Fig. 3 depicts the time-domain and spectrum representations of a sEMG signal 

obtained with various electrode configurations. 

 

 

Fig. 2 Time-domain (on the left) and their frequency spectra (on the right) representations 

for a sEMG signal recorded using different spatial filters 

 

The force generated by a muscle during contraction depends on the number of MUs that are 

activated and their firing rates. In this study, two ranges of recruitment thresholds (RR) within 

each MU were selected: a narrow range set at RR = 30% and a wide range set at RR = 70%, 

both in a pool of 120 motor neurons. Two types of MU firing rate (FR) strategies were 

also considered: the first strategy (FR1), termed “onion skin”, involved larger firing rates of 

low-threshold MUs compared to high-threshold MUs, while the second strategy (FR2), 

called “reverse onion skin”, involved smaller firing rates of low-threshold MUs compared to 

high-threshold MUs. In both strategies, the peak firing rate (PFR) was set at 20, 25, and 30 Hz. 



 INT. J. BIOAUTOMATION, 2025, 29(1), 33-50 doi: 10.7546/ijba.2025.29.1.000988 
 

37 

 

Fig. 3 Time-domain (on the top) and their frequency spectra (on the bottom) representations 

for a sEMG signal recorded using different electrode shapes 

 

Dataset acquisition and preprocessing 
The sEMG signals were generated for each of the parameter combinations mentioned above to 

create the dataset. Table 1 provides an overview of the settings used for generating the simulated 

sEMG signals. Ten different MVC percentages were used, ranging from 10% to 100% with 

a 10% increment. The use of the three spatial filter configurations, the two electrode shapes, 

the two inter-electrode distances, the seven values of MU recruitment (two RR, two FR 

strategies, and three PFR), and the ten MVC levels, allowed to obtain a total of 1200 simulated 

sEMG signals (720 signals generated using the circular electrode and 480 signals generated 

using the rectangular electrode). Fig. 4 represents an example of sEMG signal generated across 

the 10 MVC levels. 

 

Table 1. Summary of simulated sEMG signal generation settings 

Electrodes 

shapes 

FR  

strategies 
Filters RR 

PFR, 

Hz 

Inter-electrode 

distances, mm 

MVC, 

% 

Number 

of signals 

Circular 
FR1 

FR2 

LDD 

LSD 

NDD 

30% 

70% 

20 

25 

30 

5 

10 (for LDD and LSD) 

8 (for NDD) 

10 to 

100 
720 

Rectangular 
FR1 

FR2 

LSD 

LDD 

30% 

70% 

20 

25 

30 

5 

10 

10 to 

100 
480 

 

The distributions outlined in the previous subsection, including the uniform distribution of MU 

recruitment time, Gaussian distribution of motor unit force lengths, neuromuscular junctions, 

and ending tendons, as well as the Poisson distribution of all MU firing rates, enabled the 

generation of diverse EMG signals following each execution, even when using the same 

parameter settings. The process was repeated five times to generate 6 000 different sEMG 

signals in total, each with 5 s length (10 240 data points). 

 



 INT. J. BIOAUTOMATION, 2025, 29(1), 33-50 doi: 10.7546/ijba.2025.29.1.000988 
 

38 

 

Fig. 4 sEMG signal generated with the 10 MVC levels 

 

Preprocessing data is an important step in machine learning and deep learning workflows. 

It refers to a set of techniques to prepare raw data for analysis or modeling. Preprocessing is 

often necessary because raw data may contain inconsistencies, noise (in case of real data), 

or other issues that may affect model performance. Therefore, in this section, we expose the 

preparation steps for our sEMG dataset to train a DL model. 

 

We first appended to each signal a numerical value ranging from 0 to 9, corresponding to the 

MVC level with which the signal was generated (Table 2). This step allowed us to label the 

data so that it can be used for supervised learning. The labeled signals were then saved in a 2D 

array of size (6 000, 10 241). Since 6 000 signals may be insufficient to get promising results 

when training a DL model, we used an augmentation technique to increase the dataset size. 

 

Table 2. MVC levels with the corresponding labels 

% MVC 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Label 0 1 2 3 4 5 6 7 8 9 

 

To augment our dataset, we used ImageDataGenerator, a Python function commonly used for 

generating augmented data from existing samples. Each signal was subjected to four types of 

transformations, which were adapted to suit the temporal nature of the signals. 

These transformations included random rotation; which can be interpreted as a random 

perturbation or distortion; in the range -0.1 to 0.1 degrees, random horizontal and vertical shifts 

up to 20% of the original width and height, horizontal flipping, and filling in empty values with 

the nearest one. Using this procedure, we produced two augmented samples for every original 

sample, giving a total of 18 000 signals. 
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To improve the performance of our DL model, we normalized each EMG signal. The signals 

have a wide dynamic range, meaning they have both low and high amplitude components. 

Normalization scales the values in the signal to a common range, preventing extreme values 

from dominating the model’s performance. We used the following equation: 
 

𝑋𝑛𝑜𝑟𝑚 =
( 𝑋−𝑋𝑚𝑒𝑎𝑛 )

𝑋𝑠𝑡𝑑
  (1) 

 

where, 𝑋𝑛𝑜𝑟𝑚 is the normalized signal of 𝑋 – the row input of our dataset (sEMG signal), 

𝑋𝑚𝑒𝑎𝑛 is the average value, and 𝑋𝑠𝑡𝑑 is the standard deviation of 𝑋. 

 

In summary, the preprocessing steps consisted in labeling the signals, augmenting the dataset 

with ImageDataGenerator, and normalizing each signal. The signals were saved in a 2D array 

of size (18 000, 10 241), and stored in a .csv file. This complete set of data was used to train 

and evaluate the performance of a DL model for the classification of sEMG signals. 

 

Deep learning classifier 
The model was built using Google Collaboratory with GPU and Python 3.10 programming 

language, a cloud-based platform that offers free access to computing resources. We used the 

convolutional neural network to build our classifier. The model has a sequential architecture, 

with layers organized linearly, with each layer feeding its output directly to the next layer.  

This sequential structure is a key feature of Keras’ sequential model, which allows for 

straightforward layer stacking to build the neural network (Fig. 5). 

 

 

Fig. 5 Overall architecture of the CNN-based model 

 

The first layer is a 1D convolutional layer, which performs convolution operation on 

the signal. It uses 128 filters with a kernel size of 3, and activated with rectified linear unit 

(ReLU) function to introduce non-linearity into the model, which is defined as: 
 

𝑅𝑒𝐿𝑈(𝑋) = max (𝑋, 0) (2) 
 

The convolution operation is represented mathematically as [2]: 
 

(𝑋 ∗ 𝐾)(𝑡) = ∑ 𝑋(𝑎)𝐾(𝑡 − 𝑎)𝑎  (3) 

 

here, 𝑡 is the current output position, 𝑎 is the position in the input 𝑋, and 𝐾 is the kernel. 
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The second layer is a 1D MaxPooling layer, which performs a max-pooling operation on the 

output of the previous convolutional layer, with a pool size of 2, allowing the maximum value 

within every two consecutive values to be taken. This is a form of down-sampling or 

sub-sampling the input signal to the layer, mathematically defined as:  

 

𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋)𝑎 = max( 𝑋(𝑎), 𝑋(𝑎 + 1))  (4) 

 

where 𝑋(𝑎) is the ath element in the input and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋)𝑎 is the output of the 

MaxPooling layer at the ath position [26]. 

 

To prevent the model from over-fitting during training, a Dropout Layer was added at a rate 

of 0.25. During training, this layer allows a portion of the connections between the previous 

layer and the next layer (0.25% of the total connections in this case) to be randomly eliminated, 

preventing the model from relying heavily on specific neurons and improving its 

generalizability [33]. With a dropout rate of 𝑝 we can represent this as: 

 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑋, 𝑝)𝑖 = {
𝑋𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
 (5) 

 

A second 1D convolutional layer was afterwards added with 64 filters, a kernel size of 3, 

and ReLU activation. Then a similar 1D MaxPooling Layer to the previous one follows the 

second convolutional layer. Another Dropout Layer with a rate of 0.25 was added again, 

before a third 1D convolutional layer with 32 filters, the same kernel size, activation function, 

and a similar 1D MaxPooling and Dropout Layers with a rate of 0.5. 

 

Finally, a Flatten layer flattens the output from the previous layer into a 1D vector. This vector 

is passed to a fully connected Dense layer with 10 units and a Softmax activation function, 

which converts the previous layer’s output into a probability distribution over the ten output 

classes, using the following equation: 
 

𝑓(𝑋)𝑖  =
𝑒𝑋𝑖

∑ 𝑒
𝑋𝑗

𝑗

 (6) 

 

where 𝑋𝑖 is the row score for the ith class, and 𝑓(𝑋)𝑖 is the probability of the ith class. 

All the layers’ details are represented in Table 3. 

 

Table 3. The CNN model’s layers 

Layers Filters Size / Rate Activation 

1D-Convolution_1 

1D-MaxPooling_1 

Dropout 

1D-Convolution_2 

1D-MaxPooling_2 

Dropout 

1D-Convolution_3 

1D-MaxPooling_3 

Dropout 

Flatten layer 

Dense layer 

128 

- 

- 

64 

- 

- 

32 

- 

- 

- 

10 

3 

2 

0.25 

3 

2 

0.25 

3 

2 

0.5 

- 

- 

ReLU 

- 

- 

ReLU 

- 

- 

ReLU 

- 

- 

- 

Softmax 
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Before compiling the model, train_test_split function is used to split our normalized dataset 

into training data (85%) and testing data (15%) with a random seed of 42. Another split is 

performed on training data to extract the validation data (20% of the training data), which plays 

a crucial role in preventing overfitting and evaluating the model’s generalizability and 

monitoring performance during training for each epoch. 

 

The model was compiled and trained for 50 epochs with a batch size of 80, using training data. 

Categorical cross-entropy is used as a loss function, which compares the Softmax output 

probabilities to the one-hot encoded labels. The network’s parameters are adjusted to minimize 

the loss using the Adam optimizer, while the testing data is used later to evaluate the 

model performance. 

 

Results 
The line chart in Fig. 6 illustrates the DL model accuracy and loss across epochs for training 

and validation data. It shows the progress of the model learning, observations on 

its convergence, and performance. Model accuracy increased gradually over the first 10 epochs 

and stabilized around epoch 45, while the model loss decreased. Thus, the model progressively 

improved its ability to minimize errors as the number of epochs increased. 

 

  

(A) (B) 

Fig. 6 The DL model: accuracy (A) and loss (B) versus training epochs 

 

Next, we calculated the four performance metrics (precision, recall, F1-scores, and accuracy) 

using the test dataset. The results are shown in Fig. 7. These statistical metrics offer 

a comprehensive evaluation of the model’s classification capability, and allow us to determine 

its efficiency in differentiating between different classes. 

 

The confusion matrix, a 2D matrix whose size is equal to the number of classes, is another way 

to assess model performance. Confusion matrix is extracted and plotted for our model to show 

the percentage of sEMG signals that were correctly classified and those that were misclassified. 

The higher the diagonal values of a confusion matrix, the better performance of the classifier. 

Fig. 8 shows that the CNN model obtained high performance results where the 10% MVC class 

achieved the highest accuracy of 97.64%. 
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Fig. 7 Performance metrics of the trained model 

 

 

 

 

Fig. 8 Confusion matrix for the trained CNN model 

 

 

Fig. 9A shows the number of correctly classified and misclassified sEMG signals in each 

MVC level. As an example, the second row indicates that 251 out of 266 signals with 20% 

MVC of the test data were correctly classified into their corresponding class, 7 signals were 

misclassified into 10% MVC class, 4 signals into each of 30% MVC and 50% MVC classes. 

The precision, recall and F1-score performance metrics for each class, along with their macro 

and weighted averages, are shown in Fig. 9B. 
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(A) (B) 

Fig. 9 Number of correctly classified and misclassified signals per class (A),  

and performance metrics per class (B) 

 

Discussion 

Since deep CNNs have been proven to be able to extract complex patterns and features from 

complex signals, they were used in this work to classify the simulated sEMG signals, into the 

different MVC levels, overcoming the constraints of earlier studies’ use of typical ML 

approaches [11, 13, 16, 25, 27, 35]. The results indicate strong performance of the model in 

distinguishing between classes, with an accuracy, F1-score, recall and precision of 88.88%, 

88.75%, 88.80% and 88.86%, respectively. Most of the classes also achieved high classification 

accuracy, especially the first two classes which exceeded the 94.00% accuracy. We used 

a MATLAB model to produce sEMG signals with different filter types, electrode shapes, 

and other randomly distributed parameters. This allowed us to test the robustness of our method 

in a variety of settings and conditions by simulating a wide range of scenarios for sEMG [18]. 

Our findings indicate the efficiency and generalization of our approach by including 

such heterogeneity. 

 

When generating the dataset, we used two ranges of recruitment thresholds within each MU 

(RR = 30% and RR = 70%). In the case of a narrow range for example (RR = 30%), this implied 

that the muscle recruited all MUs at an average of 30% of its maximum voluntary contraction. 

That is, even when the contraction level increases, there will be no significant increase in signal 

amplitude starting from 30% MVC, since most MUs were already recruited. Consequently, 

the classification accuracy for classes ranging from 30% to 100% was slightly lower than the 

first two levels. In this range, the change in the MVC level may affect more the frequency 

components of the sEMG signals than the amplitudes that depend on the number of recruited 

MUs. Hence, the amplitude contributed more to the classification of the first two classes. 

This, along with our prior findings in [19], aligns with the results of the muscle force production 

model presented in the research of Raikova et al. [24], in which the motor unit set generated 

muscle force estimates in both the time frame and frequency domains. In both models, 

motor unit firing principles influence force generation, with frequency features becoming 

increasingly important as the number of motor units recruited increases. These analogies 

emphasize the importance of frequency characteristics in effective classification, particularly 

when a narrow recruitment range is used. 
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Diverse methodologies and conclusions emerge from a collective investigation into muscle 

fatigue assessment using sEMG signal classification. Table 4 shows a brief summary of 

previous studies related to muscle fatigue detection and classification, in comparison with 

our work. Previous research works were mainly based on binary classification (fatigue and 

non-fatigue) [13, 16, 25, 27], or limited fatigue levels classification [22, 35]. In the present 

work, the sEMG signals were classified into ten different MVC levels. With this, we can 

monitor changes in muscle strength over time and identify when a muscle is getting tired. 

This allows clinicians and practitioners to access a more comprehensive assessment of muscle 

fatigue and its severity, and therefore make correct diagnoses and more appropriate decisions 

regarding patient management and treatment. 

 

Table 4. Comparisons of our work with previous studies  

related to muscle fatigue detection and classification 

Ref. Objectives Methodology Results 
Limitations / 

future work 

[11] 

Using the 

ANN for the 

classification 

of EMG 

signals. 

3 input features: 

root mean square, average 

rectified value and mean 

frequency were extracted 

from simulated EMG 

signals using a computer 

muscle model. The scaled 

conjugate gradient 

algorithm was used to train 

the 16 neurons’ hidden 

layer ANN. 

Successfully classified 

the percentage of 

MVC using the input 

features. 

No information 

about the size or 

diversity of the 

dataset. And no 

discussion of the 

classification 

system’s 

applicability to 

other muscle 

groups or 

individuals. 

[27] 

A wireless 

system for 

monitoring 

and detecting 

muscle 

fatigue in 

real-time. 

Database created from 3.4 

hours of data from 10 

people using wireless 

wearable EMG sensors. A 

fatigue evaluation algorithm 

based on time-frequency 

feature analysis was 

proposed. Isometric 

contraction and dynamic 

muscle fatigue trials were 

used for validation. 

The mean power 

spectrum frequency 

was a more effective 

measure of muscle 

fatigue than time-

domain features.  

It decreases as 

experimental time 

increases. 

The small sample 

size of 10 subjects 

in the muscle 

fatigue database. 
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[13] 

Distinguish 

between non-

fatigue and 

fatigue 

conditions of 

dynamic 

muscle 

contractions 

using sEMG. 

Nonstationary and 

multicomponent variations 

of sEMG signals recorded 

from the biceps brachii 

muscle during dynamic 

fatigue contractions of 

52 healthy volunteers, were 

analyzed using time-

frequency methods. 

For classification, nave 

Bayes, SVM, random 

forest, and rotation forests 

were used. 

The proposed time-

frequency distributions 

captured the 

nonstationary 

variations of sEMG 

signals. The majority 

of the characteristics 

differ between muscle 

fatigue and non-

fatigue. 

Extended modified 

B-distribution with 

SVM achieved the 

highest accuracy of 

91%. 

_ 

[35] 

A fatigue 

state 

classification 

system. 

The k-nearest neighbor was 

used to classify sEMG from 

the lower limb muscles of 5 

healthy subjects, into 3 

categories. 

The algorithm’s 

accuracy was 

improved by 

combining time and 

frequency domain 

eigenvalues. 

More data must be 

collected for 

greater accuracy. 

[25] 

ML system to 

classify 

fatigue 

regimes from 

EMG and 

heart rate 

variability 

data. 

EMG and heart rate 

variability measurements 

were obtained from 14 

subjects during a constant 

work rate test. Significant 

parameters were identified. 

A binary classification 

system was implemented. 

The system achieved 

classification 

performances  

of 0.82 ± 0.24. 

Fourier median 

frequency was the best 

fatigue descriptor. 

Fatigue-related 

values may vary 

according to the 

subject and 

experimental 

conditions, 

making a 

quantitative 

approach less 

appropriate. 

[16] 

Detect and 

improve the 

accuracy of 

dynamic 

muscle 

fatigue 

classification. 

Multi-domain sEMG 

features were extracted and 

fused. 

An improved SVM with a 

differential evolution-based 

whale optimization 

algorithm was proposed. 

Average accuracy  

of 85.50% in ankle 

dorsiflexion and 

84.75% in ankle 

plantarflexion for 

dynamic muscle 

fatigue prediction. 

Too many features 

may lead to 

classifier 

redundancy and 

affect recognition 

efficiency. 

[22] 

A wearable 

device to 

predict trunk 

muscle 

fatigue and 

prevent low 

back pain 

using CNN 

Shallow models and a deep 

CNN were used to learn and 

forecast 5 common 

extracted time-domain and 

frequency-domain features 

of sEMG records obtained 

from 13 healthy male 

subjects. 

The CNN 

outperformed the best 

shallow model by at 

least 30% in terms of a 

figure of merit 

combining accuracy 

and precision. 

It reduced the disparity 

between frequency and 

time domain features. 

The study focused 

on healthy male 

subjects and may 

not generalize to 

other populations. 
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[4] 

Estimate 

muscle 

contraction 

force from 

sEMG signals 

during biceps 

curl 

movements. 

EMG signals of 

8 participants used in two 

CNN branches for 

estimation: one branch for 

time domain characteristics 

from raw signal time series, 

and the other for frequency 

information. 

The proposed model 

shows an average 

coefficient of 

determination of 0.9. 

Large deviations 

between subjects 

and trials indicate 

limitations in 

estimating muscle 

contraction force. 

Testing more 

structural 

configurations of 

the model was 

suggested. 

[9] 

Develop a 

model for 

EMG-based 

force 

estimation, 

particularly 

during 

isometric 

elbow flexion 

contractions. 

Deep CNN was created by 

fusing representations 

learned from high-density 

sEMG records from the 

long head and short head of 

biceps brachii and the 

brachioradialis muscles, in 

the time and frequency 

domains. 

In terms of estimating 

force, the model 

with optimized 

hyper-parameters 

outperforms all other 

methods, with a 

normalized mean 

squared error 

of 1.63%. 

Future research 

should look into 

other sensor types, 

according to the 

authors. 

More experiments 

under different 

conditions are 

recommended. 

Our 

work 

Asses the 

muscle 

fatigue and 

severity of the 

condition 

through the 

analysis and 

classification 

of sEMG 

signals into 

MVC levels. 

A CNN-based deep learning 

algorithm was used for the 

classification of simulated 

sEMG signals recorded 

using 3 spatial filters, 

Different electrode shapes 

and various muscle 

parameters distributions. 

The classification 

model achieved an 

accuracy, F1-score, 

recall, and precision of 

88.88%, 88.75%, 

88.80% and 88.86%, 

respectively.  

Future work 

involves the use of 

real EMG data 

and explainable 

artificial 

intelligence to 

interpret the 

outcomes of the 

DL model for 

more trustworthy. 

 

 

Hickman et al. [11] created an innovative ANN for EMG signal classification, achieving 

promising results in predicting MVC levels based on root mean square, average rectified value, 

and mean frequency features, but they overlook dataset diversity and applicability beyond 

muscle types. Song et al.’s wireless fatigue monitoring system [27], which includes time-

frequency feature analysis, demonstrates the efficacy of mean power spectrum frequency in 

fatigue assessment, however, the limited sample size restricts generalizability. Meanwhile, 

Zhao et al.’s fatigue state classification system [35] encounters data scarcity, which reduces 

accuracy, whereas Ramos et al.’s wearable fatigue prediction device [25], although superior in 

performance, has limited demographic applicability. Our study provides a CNN-based DL 

algorithm for sEMG signal classification, which achieves respectable accuracy; however, 

further research in explainable artificial intelligence is required for improved interpretability. 

While each work improves sEMG signal classification, addressing dataset diversity, 

methodological validation, and demographic inclusivity are still crucial for wider clinical use 

and greater efficacy. 

 



 INT. J. BIOAUTOMATION, 2025, 29(1), 33-50 doi: 10.7546/ijba.2025.29.1.000988 
 

47 

Conclusion 
In this work, a convolutional neural network based deep learning algorithm was designed to 

classify simulated surface electromyography signals during different maximal voluntary 

contraction levels. The set of parameters and different distributions in the muscle model utilized 

in the generation of sEMG signals has shown the effectiveness and generalizability of 

our method. 

 

The results of this innovative approach show that the model successfully distinguished between 

the ten MVC level classes, with an accuracy, F1-score of 88.88%, 88.75%, a recall of 88.80%, 

and a precision of 88.86%. This work holds great promise for assessing the disease, where it 

may allow clinicians for real-time monitoring of muscle fatigue, providing a more accurate 

understanding of the condition severity across different MVC levels. 
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