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Abstract: Among the support vector machine (SVM) methods, the support vector classifier 

(SVC) is widely utilized for binary and multi classification tasks across various datasets. 

Hyperparameter tuning plays a critical role in optimizing the performance of SVM by helping 

to prevent overfitting or underfitting, enhancing model stability, adapting the model to 

different types of datasets, and increasing predictive power. This study aims to maximize SVM 

performance on datasets related to heart disease, liver disorder, breast cancer, and MINST 

(a digit dataset), which exhibit diverse sample and feature counts. Our proposed framework 

leverages Python libraries. It employs a combinatorial approach to tune the kernel, C, 

and degree hyperparameters for both the train-test-split and cross validation (CV) models with 

different input values. Model accuracy, the area under the curve (AUC), and the F1 score were 

used to evaluate the models. The most suitable model, hyperparameters, and validation size 

or number of folds, are selected to achieve maximum accuracy of SVM across all datasets. 

Results demonstrate that the train-test-split model generally improves SVM performance, 

except for the heart disease dataset, on which the CV model performs well. Our contribution 

lies in the development of a framework that combines combinatorial hyperparameter tuning 

and model selection, aiming to optimize SVM performance and predictive capabilities. 

Future research can focus on enhancing SVM performance for large-scale datasets and 

exploring ensemble techniques or deep learning models to enhance its applications in 

real-world scenarios. 

 

Keywords: Support vector machine, Hyper parameter tuning, Combinatorial optimization, 

Model selection, Machine learning, Cross validation. 

 

Introduction 
The study of intelligent systems capable of carrying out activities that traditionally 

require human intelligence is known as artificial intelligence (AI), a subfield of 

computer science [1, 39, 40, 45, 49]. Machine learning (ML) is a branch of AI that involves the 

development of models and algorithms capable of automatically improving and making 

predictions based on given data [16]. Instead of being explicitly programmed for specific tasks, 

it allows computers to learn from examples, patterns, and experiences [37]. By employing 

statistical methods and mathematical models, ML algorithms can analyze large datasets, 

recognize patterns, and make accurate predictions or decisions [56]. AI systems benefit greatly 

from being able to learn and adapt on their own, as it increases their capacity to perform tasks. 

In ML, a variety of different algorithms can be used. Which is used depends on the 

required output. ML algorithms typically belong to one of two learning types, 

supervised or unsupervised. Supervised learning algorithms are taught to predict outputs from 
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input features using labelled data, while unsupervised learning algorithms examine unlabelled 

data in search of patterns or structures but without the need for predefined outputs [7, 8]. 

 

Scikit-learn [47] is a popular ML library in Python that provides an implementation of 

support vector machine (SVM) through its SVM module. The SVM functionality in scikit-learn 

makes it simple to train SVM models, adjust hyper parameters, and generate predictions. 

The SVM is frequently employed for problems including classification, regression, and outlier 

detection [47]. The SVM method has gained wide applications in medicine and biology [36]. 

It is one of the methods SVC is frequently used for dataset binary and multi classification tasks. 

It is excellent at locating the best hyperplanes to divide data points into several classes, 

offering robustness and strong generalization capabilities [2, 66]. The effectiveness of SVMs 

in dealing with high-dimensional data and their capacity to implicitly map features to higher-

dimensional spaces are well recognized [8, 15]. Due to SVMs success, there has been 

a significant amount of research into enhancing their functionality and examining applications 

in several fields, including the creation of cutting-edge methods and algorithms [10]. 

 

The performance of a SVM can be improved by using methods such as feature scaling to 

normalize input features, tuning hyper parameters with methods like grid search [3], 

selecting data-driven kernel functions, utilizing cross validation (CV) for model evaluation and 

hyper-parameter tuning, performing data pre-processing to improve data quality, 

utilizing dimensionality reduction techniques for high-dimensional data, utilizing model 

ensembles to improve generalizability, and taking into account multiple models [14, 28]. 

Using these methods together, SVM models’ precision, efficiency, and generalizability 

could be increased [29]. 

 

Previous studies of optimizing SVM performance and automated hyper parameters tuning has 

encountered several limitations. Automated parameter tuning studies that target 

SVM performance optimization are not suitable for low-specification machines. For example, 

the automated method grid search for hyper parameter tuning has no user involvement and 

depends on predefined grids; it needs high computational power and specifications to run and 

also has the issue of scalability [25, 30, 48]. Ensemble methods also call for more computing 

power [39]. The random search explores the hyper parameter space by randomly sampling 

different combinations of hyper parameter values. This may require more iterations and does 

not consider the effect of a combination of multiple parameters on the performance 

of SVM [6, 38]. 

 

Approaches like meta-learning and automated machine learning (autoML) heavily rely on the 

performance of pre-existing models or the availability of prior knowledge [41]. 

The gradient-descent approach, when considering multiple parameters, has a dimensionality 

curse and difficulties in tuning learning rates, hindering efficient optimization [32]. 

These methods did not model the performance of hyper parameters, how they behave on 

different datasets with varying sample and feature counts. Furthermore, these approaches do 

not consider multiple parameters like model selection, the train-test-model, or CV model with 

different test sizes or folds, along with combinatorial hyper parameter tuning to optimize 

performance. And user involvement in setting these parameters is often not incorporated. 

 

In order to improve SVM performance, we intend to present a thorough framework that 

addresses the shortcomings of earlier algorithms. Our framework incorporates user input into 

setting these parameters and considers multiple parameters at once. Additionally, the user can 

choose between train-test-split and CV with various inputs when choosing the model evaluation 
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method [18, 58]. Our research focuses on maximizing SVM performance on diverse datasets 

with varying sample and feature counts [47, 67]. We propose a novel approach that do 

combinatorial hyper parameter tuning with model selection to achieve this goal.  

By systematically exploring all possible combinations of hyper parameters, our method enables 

the identification of promising settings for each dataset based on their corresponding 

accuracy scores. This comprehensive evaluation of hyper parameter combinations provides 

researchers with valuable insights for finding the best hyper parameters for SVM and 

maximizing its performance. By offering a systematic and comprehensive framework, 

our research advances the understanding of SVM hyper parameter optimization and empowers 

researchers with techniques to maximize SVM performance. 

 

Literature review 
Several researches examined the effectiveness of hyperparameters tuning, model selection, 

and other conventional techniques for improving SVM classifier performance. 

 

Hussain et al. [24] investigated the performance of SVM, k-nearest neighbours (KNN), 

and stochastic gradient descent (SGD) algorithms in classifying syncope cases. They used  

k-fold CV as well as train-test-split methods to conduct the evaluation. The train-test-split used 

20.00% for test data and 10-fold for k-fold CV. A statistical value-based performance analysis 

was carried out. Their findings show that the SVM-based model can distinguish between 

syncope and non-syncope events significantly more effectively than the KNN and SGD-based 

models when using both train-test-split evaluation and k-fold CV. 

 

Kalcheva et al. [27] focused on comparing the accuracy of different kernel functions in SVM 

for movie review classification. Initially, they tested the SVM method with default parameters. 

The authors determine the kernel functions and the corresponding parameters that produce high 

accuracy in order to get the best results. They utilized kernel functions, including the 

polynomial kernel of degree 2, the linear kernel, and the radial basis kernel and parameters 

the C and gamma parameter. Their results demonstrate that the accuracy of movie review 

classification using these kernel functions is higher than 83.00%. Interestingly, their research 

shows that the sigmoid radial kernel is not appropriate for text classification because it does not 

produce satisfactory results. This result implies that when performing text classification tasks, 

alternative kernel functions should be taken into account. 

 

Chidambaram and Srinivasagan [11] reported their work on the significance of knowledge 

extraction through feature selection and the use of SVM with different kernel methods namely 

linear, polynomial, radial basis, and sigmoid, for classification. They employ classifier subset 

evaluation to select the most relevant features, thereby optimizing the feature vectors to enhance 

accuracy. Additionally, they introduced a novel kernel approach. Their findings demonstrate 

that the accuracy of the proposed SVM using the novel kernel approach demonstrated 

experimentally to be significantly higher when compared to conventional methods. 

 

Rojas-Domínguez et al. [49] reported optimal hyperparameter tuning of SVM classifier. 

In order to accomplish this, they employed a number of techniques, including grid search, 

random search, estimation of distribution algorithms (EDAs), and bio-inspired metaheuristics. 

They also mention swarm intelligence algorithms as a well-liked method for optimization, 

in particular particle swarm optimization (PSO). By evaluating effectiveness, generalization, 

efficiency, and complexity, they choose the best approach. Their study of 15 medical diagnosis 

problems demonstrates that EDAs are the best method for hyperparameter tuning to improve 

the generalization and performance of the SVMs. 
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Syarif et al. [57] reported their work on SVM parameter optimization for classification tasks by 

using two popular methods grid search and genetic algorithm (GA). They used 9 different 

datasets for their experiment. Their findings demonstrated that grid search, when used to 

optimize SVM parameters, always finds parameter combinations that are close to optimal. 

It only performs well for datasets with few parameters and low dimensions. The GA algorithm 

performs better and is more reliable than grid search. They reported that GA is 16 times faster 

than grid search for parameter tuning of SVM for performance optimization. 

 

Gold et al. [20] described the Bayesian approach to SVM classifiers, which enables the tuning 

of hyperparameters and the selection of relevant input features using automatic 

relevance determination (ARD). By maximizing the evidence and approximating evidence 

gradients using hybrid Monte Carlo sampling, their purposed approach allows for effective 

feature selection and hyperparameter tuning. They also highlighted the use of a Nystrom 

approximation of the Gram matrix to speed up sampling times while maintaining 

classification accuracy. Their experimental results show that the ARD approach, 

when compared to conventional non-ARD SVM systems, can significantly improve 

classification performance in problems with a large number of irrelevant features. 

The tuned hyperparameter values also serve as a criterion for pruning irrelevant features, 

leading to impressive reductions in the required features. However, in datasets created by 

human domain experts, non-ARD SVMs tend to be less affected by the presence of less 

relevant features, making feature elimination through ARD less impactful on classification 

accuracy but still beneficial in reducing the number of features needed. 

 

Czarnecki et al. [12] focused on the robust optimization of SVM hyperparameters in the 

classification of bioactive compounds by comparing Bayesian and random search optimization 

methods with traditional approaches such as grid search and heuristic choice. 

Bayesian optimization’s ability to achieve better classification performance and faster 

convergence has made it a popular choice for SVM parameter optimization. Their research 

showed that Bayesian optimization was more effective than other optimization techniques at 

improving classification accuracy while also requiring fewer iterations. If implementing 

Bayesian strategy is not possible, a random search optimization strategy should be used instead. 

 

Background 
This section discusses the underlying concepts used in the papers. 

 

Support vector machine 
SVM has gained significant popularity as powerful supervised learning techniques for various 

tasks such as classification, regression, and outlier detection [35]. Among the SVM methods, 

Support vector classifier (SVC) is widely used for both binary and multi-class classification 

tasks on datasets [44, 47]. SVC implementation is built upon the renowned library, 

which provides efficient and robust algorithms for SVM-based learning [17]. SVMs are 

particularly appealing because they can find an optimal hyperplane in a high-dimensional 

feature space, maximizing the margin between different classes. This property makes SVMs 

well-suited for handling complex datasets with non-linear decision boundaries [66]. 

The SVM classifier used in this study based on the following formula [33]: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏), (1) 

 

where 𝑓(𝑥) represents the predicted class label for the input vector x; w denotes weight vector; 

x is the input vector or feature vector containing the values of features; and b is the bias term. 
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We used the One-vs-One (OvO) and One-vs-Rest (OvR) strategies for multi-class classification 

utilizing SVM in scikit-learn. Following is a representation of the decision functions for 

these strategies: 

 

OvO: for N classes, N(N – 1)/2 binary classifiers, each distinguishing between two classes, 

are trained. Among the binary classifiers, the final class prediction is determined by 

a voting scheme, such as majority voting. The decision function remains the same as Eq. (1). 

 

OvR: N binary classifiers are trained, with each classifier distinguishing one class from 

the others. The class with the highest score from all binary classifiers is selected as 

the final prediction. The decision function can be expressed as: 

 

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑤𝑖
𝑇𝑥 + 𝑏𝑖), (2) 

 

where 𝑓(𝑥) represents the predicted class label for the input vector 𝑥; 𝑤𝑖 denotes the weight 

vector for the i-th binary classifier; 𝑏𝑖 is the bias term for the i-th binary classifier; 

and 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 selects the class with the highest score among all binary classifiers. 

 

Model selection 
Our proposed method utilizes two models, namely train-test-split  and cross validation, 

for model selection of SVM. 

 

1) Train-test-split  

The train-test-split  model divides the dataset into two subsets: the training and the test 

(or validation) sets [58]. The SVM model is trained using the training set, and its effectiveness 

is assessed using the test set. We can evaluate how well the trained SVM model generalizes to 

unknown data by using a different test set that was not used during the training 

process [51, 53, 64]. Our study experimented with different test or validation sizes, 

specifically 20.00%, 30.00%, and 40.00% of the dataset. We applied various combinations of 

hyperparameters to the SVM model on each test size to assess its performance. 

 

2) Cross validation 

We employed CV as another model selection technique in addition to train-test-split  model. 

It involves dividing the available dataset into multiple subsets, or folds [9]. Each fold serves as 

a validation set, while the remaining folds are used for training, resulting in multiple iterations 

of the SVM model that are trained and evaluated [31, 65]. Evaluating the model on various 

subsets of the data aids in determining the model’s performance and robustness. A performance 

estimate is then calculated by averaging the outcomes from each iteration. We conducted 

experiments using 3-fold, 5-fold, and 10-fold CV [18]. We explored different hyperparameter 

combinations for each fold to evaluate the SVM model’s effectiveness. 

 

Hyper parameters used 

Following hyperparameters are combinatorically tuned to enhance the performance of SVM. 

 

1) Kernel parameter 
The kernel parameter of the SVM model was tuned to sigmoid, linear, and polynomial options. 

The choice of the kernel is crucial as it determines the transformation applied to the input data, 

allowing the SVM model to operate in a higher-dimensional feature space. The sigmoid kernel 

is effective for problems with complex decision boundaries because it captures 

nonlinear relationships. The linear kernel is appropriate when the decision boundary is straight, 



 INT. J. BIOAUTOMATION, 2025, 29(2), 117-144  doi: 10.7546/ijba.2025.29.2.000981 
 

122 

such as in linearly separable datasets [23, 27]. When the features and the target variable are 

related in a polynomial fashion, the polynomial kernel performs better. The SVM model’s 

performance and predictive accuracy improved by testing different kernels [45, 59]. 

 

𝑓(𝑥)  =  ∑(𝑎𝑖 ∗ 𝑦𝑖 ∗ K(𝑥𝑖, x)) + 𝑏, (3) 

 

where 𝑎𝑖 is the coefficient associated with the i-th support vector; 𝑦𝑖 is the class label of the 

i-th support vector; 𝐾(𝑥𝑖 , 𝑥) is the kernel function that computes the similarity between the 

training example 𝑥𝑖 and the test example x; and 𝑏 is the bias term. 

 

2) C parameter 

To achieve the best possible balance between training error and margin width, the C parameter 

in the SVM model was tuned to different values (3, 10, and 50). A lower C value can reduce 

overfitting by allowing for a wider margin and greater tolerance for misclassification. 

In contrast, a higher C value favours lower training error, which could lead to a smaller margin 

and increased sensitivity to data points [13, 55]. 

 

The objective function for SVM with parameter C can be represented as follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 
1

2
∗ ‖𝑤‖2 + 𝐶 ∗ ∑ (max(0,1 − 𝑦𝑖 ∗ (𝑤𝑇 ∗ 𝑥𝑖 + 𝑏))), (4) 

 

where 𝑦𝑖 is the class label of the i-th training example; 𝑥𝑖   is the feature vector of the 

i-th training example; 𝑤𝑇 is the transpose of the weight vector w; b is the bias term; and C is 

the C parameter that controls the trade-off between training error and margin violation. 

 

3) Degree parameter 

In our methodology, the degree parameter, which determines the complexity of the polynomial 

transformation in SVM models, was incorporated and tuned to values of 1, 2, and 3. 

The optimal balance between complexity and generalization was identified by assessing 

the model’s accuracy and performance at various levels. This enabled us to choose the best 

degree parameter for our dataset, resulting in accurate predictions and reliable results [22, 54]. 

 

𝑓(𝑥)  =  𝛴(𝑎𝑖 ∗ 𝑦𝑖 ∗ (𝑥𝑖
𝑇 ∗ 𝑥 + 𝑐)𝑑 + 𝑏, (5) 

 

where 𝑎𝑖 is the coefficient associated with the i-th support vector; 𝑦𝑖 is the class label of i-th 

support vector; 𝑥𝑖
𝑇 is the transpose of the feature vector 𝑥𝑖; 𝑥 is the feature vector of 

the test example; 𝑐 is an additional constant term; 𝑑 is the degree parameter specifying the 

degree of the polynomial kernel function; and b is the bias term. 

 

Accuracy metrics 

The model’s performance in the train-test-split approach was evaluated using train accuracy, 

test accuracy, F1 score, and area under curve (AUC) score measurements. And the model 

accuracy for the CV was assessed by computing the CV accuracy and F1 score. 

These evaluation metrics were used to perform a thorough evaluation of the model’s precision 

and predictive power.  
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1) Train accuracy 

Train accuracy is a metric for evaluating how well a model performs on the training set. 

It is determined by dividing the proportion of samples that were correctly classified by the total 

number of samples used for training [42]. Training accuracy formulation can be stated 

as follows: 

 

𝑇𝑟𝑎𝑖𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (6) 

 

2) Test accuracy 

Test accuracy is the measure of model performance on unseen or new data. It’s determined by 

dividing the proportion of the test set that was properly classified by the total number of test. 

 

𝑇𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (7) 

 

3) Cross validation accuracy 

The average accuracy of a model over all folds of cross validation is known as CV accuracy. 

It is determined by training and assessing the model on multiple subsets of the data, and then 

taking the average of the resulting accuracies [61]. 

 

𝐶𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑘
∑ 𝑎𝑐𝑐𝑘

𝑘
𝑖=1 , (8) 

 

where k represents the number of folds or partitions in the CV process; 𝑎𝑐𝑐𝑘 is the accuracy 

obtained on the k-th fold. 

 

4) F1 score 

A ML model’s efficacy in performing binary classification tasks can be measured using 

the F1 score. It is a unified score that takes into account both accuracy and recall, providing 

a balanced measure of a model’s performance [21]. Its formulation can be stated as follows: 

 

𝐹1  =
2

1

𝑟𝑒𝑐𝑎𝑙𝑙
 + 

1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
 2 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (9) 

 

5) AUC score 

AUC measures the model’s ability to distinguish between positive and negative classes by 

computing the area under the receiver operating characteristic (ROC) curve [54]. 

Its formulation is given below: 

 

𝐴𝑈𝐶 = ∫(𝐹𝑃𝑅(𝑇) ∗ 𝑇𝑃𝑅(𝑇))𝑑𝑇, (10) 

 

where 𝐹𝑃𝑅(𝑇) represents the false positive rate at a given threshold 𝑇; 

𝑇𝑃𝑅(𝑇) is the true positive rate at the same threshold 𝑇; and 𝑇 represents the range of thresholds 

used to generate the ROC curve. 

 

Materials and methods 

Methodology 
A new model was developed utilizing Python programming to enhance the performance of 

SVM on four different datasets. The model used different Python libraries, namely scikit-learn, 

Pandas, and NumPy. Two methods from model selection, namely CV and train-test-split, 
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were employed. Hyperparameters that significantly affected the accuracy of the SVM method 

from scikit-learn were tuned for each model. Specifically, kernel, C hyperparameter, and degree 

hyperparameter were combinatorically tuned using the best possible three inputs for each. 

All combinations resulting from the combinatorial tuning of these hyperparameters and model 

selection were observed. The most significant hyperparameter and model selection techniques, 

which led to an improved performance of SVM on all datasets, were identified. The proposed 

model flow diagram is shown in Fig. 1. 

 

 

Fig. 1 A comprehensive framework for SVM performance optimization 

 

Dataset description 
We used four binary and multi-classification datasets for SVM classification. Each dataset has 

a varying number of samples and feature counts can be seen in Fig. 2. 

 

1) Breast cancer dataset is a binary classification dataset containing 569 samples of 

breast cancer tumours, each characterized by 30 numerical features representing attributes 

of the tumour cells. The dataset is widely used in classification algorithms, notably SVM, 

for distinguishing between malignant and benign tumours. Available at:  

https://scikit-learn.org/stable/datasets/toy_dataset.html#breast-cancer-dataset. 

2) Heart disease dataset is a binary classification dataset that contains sample data from 

270 patients with suspected heart disease and has 13 features that can be used to predict the 

presence of heart disease. The complete dataset is available at: https://openml.org/d/43823. 

3) Liver disorder dataset is a binary classification dataset that contains data from 345 patients 

with liver disorders, with 6 features that can be used to predict the presence or absence of 

liver disease. The complete dataset is available at:  

https://archive.ics.uci.edu/ml/datasets/Liver+Disorders. 

4) Digit dataset is a multi-classification dataset that contains 1 797 samples of handwritten 

digits from 0 to 9, with each digit represented as an 8×8 pixel image. Furthermore, it contains 

64 features. The complete dataset is available at:  

https://scikit-learn.org/stable/datasets/toy_dataset.html#digits-dataset. 

 

The MINST and breast cancer dataset is taken from scikit-learn [44], the heart disease dataset 

from open ML [60], and the liver disorder dataset is taken from the UCI ML repository [67]. 

 

https://scikit-learn.org/stable/datasets/toy_dataset.html#breast-cancer-dataset
https://openml.org/d/43823
https://archive.ics.uci.edu/ml/datasets/Liver+Disorders
https://scikit-learn.org/stable/datasets/toy_dataset.html#digits-dataset
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Fig. 2 Dataset’s samples and features 

 

Experimental setup 
The experimental setup involved developing and evaluating an SVM model using 

Python libraries, including scikit-learn, NumPy, and Pandas is shown in Fig. 3.  

 

 

Fig. 3 Experimental setup 

 

Data preprocessing 

The required libraries were imported, Pandas and NumPy were used to pre-process the datasets. 

This includes operations like missing value handling, feature scaling, or feature engineering. 

 

1) NumPy is an essential Python library for scientific computing. It offers support for sizable, 

multidimensional arrays and matrices, as well as a range of mathematical operations for 

effectively using these arrays. NumPy is widely used in ML for numerical calculations and 

offers crucial building blocks for data manipulation and transformation [22]. 

 

2)  Pandas is a robust Python library for data manipulation. It offers simple data structures for 

effective data handling and analysis, like data frames. Pandas is suitable for activities like 

data cleaning, transformation, and exploration because it has functionality for reading, 

writing, and pre-processing structured data. It enables data processing pipelines by 

seamlessly integrating with other libraries, such as NumPy and scikit-learn [40]. 

 

Model implementation 

Scikit-learn was used to implement the SVM algorithm. To investigate their effects on 

the model’s performance, the model was set up with various hyperparameters, such as 

the kernel type, C value, and degree. Scikit-learn is a well-known Python ML library that offers 

many tools and algorithms for data mining, analysis, and modelling. It provides 

implementations of numerous ML algorithms, including SVM, which are frequently employed 

for classification and regression tasks. A user-friendly interface, effective data pre-processing, 

model training, and evaluation are all supported by scikit-learn [23]. 
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Model selection methods 

Two model selection methods, namely train-test-split and CV, were employed. 

 

Performance evaluation 

The accuracy metric was utilized to assess the performance of the SVM model. This metric 

measures the proportion of correctly classified instances. It provides a quantitative measure of 

the model’s accuracy in predicting the target variable. 

 

Visualization 

The results obtained from the model evaluation were visualized using Tableau [68]. 

This allowed for further interpretation and comparison of the model’s performance across 

different datasets or experimental conditions. 

 

Results 
In this study, the performance of an SVM classifier was assessed on four diverse datasets: 

breast cancer, MINST, heart disease, and liver disorder. The SVM classifier was tuned by 

adjusting various hyperparameters, including kernel type (linear, polynomial, sigmoid), 

C parameter (3, 10, 50), and degree parameter (1, 2, 3). The average test accuracies for 

the different hyperparameter combinations were plotted in Fig. 4 revealing exciting insights. 

 

 

Fig. 4 Test accuracies vary with parameters 

 

Fig. 4 demonstrates that the linear and polynomial kernel with all possible inputs of degree and 

C parameter, as opposed to the sigmoid kernel, exhibit the highest accuracy up to 99.00%. 

Contrarily, with the exception of the heart disease dataset, combinations using a sigmoid kernel 

resulted in lower average test accuracy drops to 40.00%. When comparing the datasets, 

the MINST dataset performed well than the other achieved the highest average test accuracy of 

99.00% because its sample size and feature count were the highest (1 797 and 64, respectively). 

The liver disorder performed poorly and achieved the lowest accuracies, ranging from 54.00% 

to 73.63% across all possible parameter combinations due to its only six features. 
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Furthermore, the heart disease dataset achieved the highest average test accuracy of 83.03% 

with the linear kernel and also the best accuracies with the polynomial kernel, but it differed 

from other datasets in that it also performed well with the sigmoid kernel, which is suboptimal 

for most other datasets. This exception is due to its smaller sample size of 270 and different 

feature count of 13 than other datasets. Lastly, the breast cancer dataset performed well with 

linear and polynomial kernel and other hyperparameter values achieving the highest accuracy 

of up to 96.00%. It shows the lowest accuracy of 39.00% with a sigmoid kernel. These outcomes 

emphasize the importance of selecting the appropriate hyperparameters when training SVM 

classifiers to maximize performance. By tuning the hyperparameters of the SVM classifier, 

the study observed an improvement in the model evaluation results, which resulted in better 

and maximum performance compared to the original SVM classification with either no 

parameter tuning or arbitrary hyperparameters. 

 

In ML, one important aspect of performance evaluation is checking the model’s train and 

test accuracy. The training accuracy measures the model’s performance on the data it was 

trained on, while the test accuracy assesses its ability to generalize to new data. A high level of 

training accuracy may indicate that the model has learned the patterns in the training data well, 

but it does not necessarily mean that the model will perform well on new, unseen data. 

In contrast, test accuracy provides a more reliable measure of how well the model will perform 

in real-world scenarios. 

 

Evaluating the training and test accuracy is essential to ensuring the model is balanced with 

the training data and can generalize well to new data. By carefully monitoring both train and 

test metrics during model development, we identify potential issues and make informed 

decisions to improve the model’s performance. 

 

Fig. 5 illustrates our model’s average training and test accuracies on each dataset. 

The breast cancer dataset achieved an impressively consistent classification accuracy of 83.00% 

average test accuracy and 82.00% average train accuracy, demonstrating the model’s ability to 

generalize to new data on this dataset. Similarly, we got consistent average train and test 

accuracy on the liver disorder and MINST dataset approximately 66.00% train and test accuracy 

for liver disorder dataset and 93.00% test and 94.00% train accuracy for the 

MINST dataset. In addition, the heart disease dataset demonstrates a large discrepancy between 

the train and test accuracies of approximately 8.00%, indicating that this dataset is over fitted 

to our model. Fig. 5 also shows the overall median of train and test accuracies across datasets. 

 

Our study emphasizes the importance of carefully evaluating and optimizing SVM model for 

classification tasks. By analysing their performance on diverse datasets, we can gain valuable 

insights into the factors contributing to their success or failure. We achieved impressive results 

on all datasets through hyperparameter optimization. 

 

We used a scatter plot to visualize the relationship between the train and test accuracies obtained 

from our model. The plot included all the accuracy data points we collected, and we added 

a power trend line to understand the overall trend of the data better. The trend line p-value is 

less than 0.0001, indicating that the relationship between the variables is statistically significant, 

which means that it is unlikely to be due to chance. The R-squared value of 0.7952 indicates 

that the power trend line explains approximately 79.52% of the variation in the data, which is 

a relatively good fit. 
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Fig. 5 Average train and test accuracies 

 

Fig. 6 represents the train and test accuracy scatter plot with power trend line. 

 

 

Fig. 6 Train and test accuracy scatter plot with power trend line 

 

The upward-sloping trend line in Fig. 6 indicates that our analysis revealed a positive trend in 

the data. However, we also observed significant variability in the accuracy data points, 

with some combinations of hyperparameters yielding lower accuracies in the range of 0.38 to 

0.43. Most individual accuracies fell within a central range of approximately 0.70 to 0.86. 

 

We also noted the significant improvement in accuracy that resulted from 

hyperparameter tuning, with some data points achieving both high train and test accuracies in 

the range of 0.91 to 1.00. This improvement indicates that our goal of achieving the best 

possible train and test accuracies was successfully met through our hyperparameter 

optimization efforts. 

 

While accuracy is a commonly used metric for evaluating classification models, it is not always 

the best measure of a model’s performance. The AUC and the F1 score provide additional 

information about a model’s ability to classify positive and negative instances accurately. 

AUC measures the model’s ability to distinguish between positive and negative instances, 

regardless of the threshold used to make classification decision. The F1 score considers both 

precision and recall, balancing the two metrics. 
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When a class imbalance or misclassification of one class is more important than the other, 

the AUC and F1 score can be more informative metrics than accuracy. Therefore, it is necessary 

to calculate the AUC and F1 score in addition to accuracy to gain a more comprehensive 

understanding of a classification model’s performance. 

 

Fig. 7 presents the average AUC, F1 score, and test accuracy with varying train-test-split sizes 

of 0.2, 0.3, and 0.4 on four datasets. Our objective was to investigate how the average accuracy 

of the model changes with changes in validation or test size. With 0.3 validation size, the breast 

cancer dataset demonstrated maximum average accuracies of 84.00%, 81.00%, and 83.00% for 

all three-accuracy metrics, AUC, F1 score, and test accuracy, respectively. The heart disease 

dataset, on the other hand, produced the best results with 0.2 validation size. It has nearly the 

same F1 score and test accuracy of approximately 78.00% but 10.00% difference in AUC score. 

 

 

Fig. 7 Average AUC, F1 score, and test accuracy with varying validation sizes 

 

Furthermore, with 0.4 validation size, the MINST dataset performed well, with the highest AUC 

score of 99.00%, demonstrating the model’s ability to classify the true positives and true 

negatives of the dataset with a larger number of samples and feature count. It got 93.00% 

average accuracy score for F1 and test accuracy metrics. Lastly, the liver disorder dataset 

showed optimal results with 0.2 validation size, having the best AUC scores, and 64.00%, 

and 66.00% for F1 score and test accuracy, respectively. 

 

Our analysis revealed that changing the validation size and hyperparameter tuning with 

different combinations significantly affected the model’s accuracy. We observed some 

combinations yielding the best accuracy, while others resulted in lower accuracy. 

Using different metrics to assess the model's accuracy, we better understood its performance on 

different datasets. 

 

In Fig. 8, the scatter plot demonstrates the correlation of all resultant accuracies between 

the test accuracy with the AUC and F1 scores. We employed a polynomial trend line to illustrate 

the relationship between these variables better. The R-squared value of polynomial trend line 
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between the test accuracy and AUC score is 0.7724, and p-value less than 0.0001 and in between 

test accuracy and F1 score, the R-squared value of the polynomial trend line between is 0.9901 

and p-value less than 0.0001 indicating the best fit of resultant data points across this trend line. 

The trend line enables more precise visualization of the underlying relationship between 

the studied variables by fitting a polynomial equation to the data points. 

 

 

Fig. 8 Test accuracy, AUC, and F1 scores scatter plot with polynomial trend line 

 

The scatter plot reveals a cluster of data points between 0.71 to 0.99 in between the test accuracy 

and AUC score graph. Additionally, outliers are observed, indicating instances where the results 

deviated from the expected trend. Furthermore, the scatter plot displays data points spread 

between 0.68 to 0.99 in the test accuracy and F1 score graph. We also observe that the accuracy 

between test and F1 score drops to 0.3 to 0.4. Some scatter is also observed between low and 

higher accuracies. These variations are attributable to the diverse hyperparameter combinations 

used in our analysis. The scatter plot represents the results obtained and highlights the 

disparities observed in the various hyperparameter combinations. 

 

Fig. 9 depicts the range of minimum and maximum test accuracies obtained for all 

hyperparameter combinations. These accuracies were further categorized based on three 

different validation sizes of 0.2, 0.3, and 0.4. Our model achieved a maximum accuracy of 

96.49% for the breast cancer dataset with a validation size of 0.3 and the hyperparameters 

previously mentioned. In contrast, the maximum accuracy of 90.74% was obtained for the heart 

disease dataset with a validation size of 0.2. Likewise, the optimal validation size for the liver 

disorder dataset was determined to be 0.2, yielding a maximum test accuracy of 76.81%. 

Lastly, the MINST dataset achieved 99.03% test accuracy with a validation size of 0.4, 

indicating that different datasets may require different validation sizes to achieve 

optimal performance. When compared to other datasets, MINST has the highest performance 

and accuracy levels. 

 

Furthermore, Fig. 9 also presents the minimum test accuracies obtained for all the datasets with 

our model. It is worth noting that the resultant accuracies vary significantly depending on the 

hyperparameters used. For example, the minimum accuracy obtained for the breast cancer 

dataset was 38.00%, while the minimum accuracy obtained for the MINST dataset was 78.00%. 

These results suggest that the slightest hyperparameter change can significantly affect the 

model’s accuracy. Thus, selecting optimal hyperparameters is paramount to achieving the best 

possible performance from our model. 
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Fig. 9 Minimum and maximum test accuracies with different validation sizes 

 

Fig. 10 highlights the range of F1 scores obtained at varying validation sizes. Our analysis 

revealed that breast cancer dataset got maximum F1 score of 97.49% with 0.3 validation size, 

the same as the highest test accuracy we got for this dataset. Moreover, the minimum F1 score 

for this dataset is 32.69% with 0.4 validation size. 

 

 

Fig. 10 Minimum and maximum F1 score with different validation sizes 

 

Our findings indicate that the heart disease dataset achieved its maximum F1 score of 84.12% 

at a validation size of 0.2. Conversely, the minimum F1 score for this dataset was recorded at 

the same validation size but with different hyperparameter combinations, indicating the 

importance of hyperparameter tuning for optimal performance. 
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Furthermore, the liver disorder dataset yielded the maximum F1 score of 76.21% at a validation 

size of 0.2, while the minimum F1 score was observed to be 43.19%. Finally, our MINST 

dataset experiments showed that validation size of 0.4 was the best for achieving the highest F1 

score of 99.04% and minimum of 79.55% with the same validation size, demonstrating that 

picking a suitable validation size and hyperparameters are crucial in achieving high test 

accuracy and F1 scores. 

 

To thoroughly evaluate model performance, we calculated the AUC scores for the same four 

datasets to obtain the highest possible AUC score in addition to the F1 score and test accuracy. 

As presented in Fig. 11, our findings reveal that tuning hyperparameters in different 

combinations can lead to significant variations in AUC scores. 

 

The breast cancer dataset’s highest AUC score was 99.87% at 0.2 validation size. We noticed 

a significant difference in the AUC score in it because the minimum AUC score even dropped 

to 0.014% with a 0.2 validation size and different parameter combinations. This difference 

highlights how this dataset differs significantly from others regarding its AUC score. In the case 

of the heart disease dataset, we obtained a maximum AUC score of 94.37% with a validation 

size of 0.2; for some results, the AUC score drops to 62.91% with the same validation. 

Similarly, the liver disorder dataset had the highest AUC score of 82.45% at 0.2 validation size 

and the lowest drop to 60.00%. Finally, for the MINST dataset, the maximum AUC score 

achieved is 1.00% with a 0.2 validation size and 97.29 with a 0.4 validation size, 

with a 3.00% difference. 

 

 

Fig. 11 Minimum and maximum AUC score with different validation sizes 

 

We currently know which validation sizes provide the best test accuracy, F1 score 

and AUC score for four datasets. It is critical to understand which hyperparameter combinations 

are producing these results. To gain a deeper understanding of what parameter combinations 

led to the highest accuracy of metrics, we analyzed our models’ performance in more detail. 

Specifically, we sought to identify the specific hyperparameter combinations that resulted in 

the best accuracy values for metrics and that could improve upon the default accuracy or other 

hyperparameter tuning approaches. 
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Fig. 12 illustrates the best hyperparameter combinations and optimal validation sizes, 

which give maximum accuracy scores for all three metrics across all datasets. 

For the breast cancer dataset, we found that a train-test-split  size of 0.3 and hyperparameters 

tuned to a linear kernel, the C parameter value of 3, and any of the three possible inputs for 

degree resulted in the maximum scores across all evaluation metrics. Similarly, for the heart 

disease dataset, a validation size of 0.2 and hyperparameters tuned to a poly kernel, 

the C parameter value of 3, and degree set to 1 was the only combination that yielded 

the maximum scores. 

 

In the case of the liver disorder dataset, a validation size of 0.2 and hyperparameters tuned to 

a linear kernel, with all three possible inputs for C parameter and degree, resulted in the 

maximum scores. Lastly, for the MINST dataset, a validation size of 0.4 and hyperparameters 

tuned to a poly kernel, with all three possible inputs for the C parameter and degree set to 3, 

resulted in the maximum scores. We further analyze the performance of the SVM by using CV 

from model selection with the same hyperparameter combinations and CV values of 3, 5, 

and 10. 

 

 

Fig. 12 Optimal hyperparameter combinations and validation size for maximum scores 

 

Fig. 13 shows that for the MINST and breast cancer datasets, combining varying values of 

the C and the degree hyperparameters with a linear or polynomial kernel resulted in the highest 

average CV accuracies of up to 95.00%. Except for the heart disease dataset, the sigmoid kernel 

has the worst performance, and the average CV accuracy of its combinations falls to 40.00%. 

Results from CV and a train-test-split  showed that the sigmoid kernel generally did not yield 

the best results, suggesting that its use should be avoided in practice. 

 

Across the datasets, the MINST dataset has the highest performance, with an average 

CV accuracy of 95.07%, followed by the breast cancer dataset, which is only 0.2% less accurate. 

The greater number of samples and features in both datasets is responsible for the best accuracy. 

Notably, breast cancer has the lowest CV accuracy of 40.00% when utilizing sigmoid 

kernel combinations. Furthermore, due to low feature count, the liver disorder dataset performs 

poorly with CV model like train-test-split model, with a CV accuracy of up to 68.41% and 

a drop to 54.02% with a sigmoid kernel. Lastly, the heart disease dataset got the highest average 

CV accuracy of 83.21% with linear kernel and lowest CV accuracy of 73.46% using a sigmoid 

kernel combination with degree 50 and all possible inputs of C parameter. These outcomes 

underscore the significance of proper hyperparameter tuning and model selection in achieving 

robust results in ML applications. 
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Fig. 13 Cross validation accuracies vary with parameters combination 

 

We further analyzed the average CV accuracies with varied folds to gain a more comprehensive 

understanding of SVM performance on the datasets. This allowed us to assess the robustness 

of our model and identify any potential weaknesses or areas for improvement. 

 

Fig. 14 shows the average CV accuracy for the four datasets with varied CV fold values. 

For the breast cancer dataset, we found that the highest average CV accuracy was achieved with 

a 5-fold value of 77.19%, while the lowest was achieved with a 10-fold value of 75.79%. 

Conversely, for the heart disease dataset, 3-fold results in the highest average CV accuracy of 

80.07% and 5-fold results in the lowest average of 79.00%. 

 

Overall, the liver disorder dataset has the worst performance, but the highest average CV 

accuracy we obtained was 64.93% with a 3-fold value, and the lowest was 64.61% with 

a 10-fold value. Lastly, the MINST dataset with 10-fold got the highest average CV accuracy 

and the lowest of 89.68 with 3-fold. Fig. 13 also demonstrates that the average CV score across 

all data sets is 77.70%. These findings highlight the significance of CV folds in achieving 

maximum CV accuracies. Despite hyperparameter combinations, the selection of CV fold also 

significantly affects the performance of SVM in CV model. 

 

To delve deeper into evaluating our CV model for SVM, we employed the F1 score metric to 

assess its performance. By incorporating multiple evaluation metrics, we can obtain a more 

comprehensive understanding of how our model performs and identify any improvement areas. 

 



 INT. J. BIOAUTOMATION, 2025, 29(2), 117-144  doi: 10.7546/ijba.2025.29.2.000981 
 

135 

 

Fig. 14 Average CV accuracies with varied CV fold values 

 

Fig. 15 presents our analysis of the F1 score for our CV model for SVM with 3, 5, and 

10-fold values on four datasets. We found that the highest F1 score, 75.22% was achieved with 

a 5-fold value for the breast cancer dataset, suggesting that a moderate number of folds may be 

optimal for this dataset. 

 

In contrast, the heart disease dataset exhibited the highest F1 score of 79.75% with 

a 3-fold value. Finally, a 10-fold value and an F1 score of 90.87% and 61.55%, respectively, 

were seen to be the best in the MINST and liver disorder datasets. It suggests that higher folds 

are needed for these datasets to achieve the highest F1 score. Fig. 13 also shows that the average 

F1 score across the datasets is 76.23%. 

 

 

Fig. 15 Average F1 score with varied CV fold values 

 

Interestingly, our results showed that the optimal fold value for the F1 score was similar to that 

for average CV accuracies for each dataset, except for the liver disorder dataset. When we 

choose the best combination of hyperparameters and fold value, we consider different metrics 

scores and select those that perform best for all metrics. 

 

Fig. 16 shows the individual result entities scatter plot between CV accuracy and F1 score that 

we obtained from our model of combinatorial hyperparameter tuning. The power trend line has 

been used to better understand the data trend. The R-squared value of the trend line is 0.9847, 

which indicates a strong positive correlation between the hyperparameter combinations and 

the accuracy of the SVM model. The p-value is less than 0.0001, indicating that the observed 

correlation is statistically significant. 
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Fig. 16 CV accuracy and F1 score scatter plot with power trend line 

 

The scatter plot reveals a cluster of result data points with accuracies ranging from 0.65 to 0.85, 

suggesting that most of the tested hyperparameter combinations yield relatively high accuracy 

for the SVM model. Additionally, some data points with higher accuracy ranging from 0.91 to 

0.97 were also obtained, indicating that certain combinations of hyperparameters perform 

exceptionally well. 

 

On the other hand, some data points have lower accuracy, ranging from 0.41 to 0.59, which 

suggests that some hyperparameter combinations are less effective for the SVM model. 

Moreover, some data points with the lowest values of 0.3 to 0.4 indicate that certain 

combinations of hyperparameters yield poor accuracy. 

 

Using different fold values, our study also explored the maximum and minimum CV accuracies 

obtained for the four datasets. The results, depicted in Fig. 17, show that for the breast 

cancer dataset, the maximum CV accuracy of 95.96% was obtained with a CV fold value of 

3 and a minimum of 40.24% with 3 and 5 folds but with different hyperparameter combinations. 

On the other hand, the heart disease dataset saw a maximum CV accuracy of 84.07% with 

3 and 5 folds and a minimum of 72.59% with 5 and 10 folds using varying hyperparameters. 

 

 

Fig. 17 Minimum and maximum CV accuracy with varied fold values 
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Conversely, the liver disorder dataset exhibited a maximum CV accuracy of 73.62% with 

a 5-fold value and a minimum of 53.62% with a 3-fold value. The MINST dataset obtained 

the maximum accuracy of 97.77% with a 10-fold value, and its minimum accuracy drops to 

74.91% with a 5-fold value. These findings indicate the maximum accuracies we can get for 

different datasets of varying samples and features with different hyperparameter tuning and 

CV fold values. 

 

Maximum and minimum F1 scores for the four datasets with different fold values are displayed 

in Fig. 18. The breast cancer dataset has an impressive maximum F1 score of 95.65% at 

CV value of 3-folds and a minimum F1 score of 34.53% at CV value of 10-folds. The maximum 

F1 score we obtain for the heart disease dataset is 83.83% at a 3-fold, and the minimum is 

72.18% at a 10-fold. Furthermore, for the liver disorder dataset, the maximum F1 score 

we obtain is 71.81% with 5-folds, while the minimum F1 score we obtain is 41.83% with  

3-folds. Finally, for the MINST dataset, we get the maximum F1 score of 97.74% with 10- folds 

and minimum F1 score of 75.36% with 5-folds. 

 

 

Fig. 18 Minimum and maximum F1 scores with varied fold values 

 

These results demonstrate the effectiveness of hyperparameter tuning in maximizing 

the F1 score and CV accuracy with the same CV fold value. In light of these findings, 

we selected the most promising hyperparameter combinations that have produced these 

outstanding results. The selected optimal combinations are depicted in Fig. 19. 

 

 

Fig. 19 Optimal hyperparameter combinations and CV fold values for maximum scores 
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The findings presented in Fig. 19 demonstrate the optimal combinations of hyperparameters 

and CV fold values for maximizing the performance of our SVM model on each dataset. 

For the breast cancer dataset, selecting a 3-fold CV value, a linear kernel, a degree parameter 

of either 1 or 3, and a C parameter of 50 results in the maximum CV and F1 score. 

 

For the heart disease dataset, selecting either the 3 or 5-fold cross, and tuning the kernel 

parameter to either linear or poly, a degree parameter of 1 for linear kernel and all possible 

inputs for the poly kernel, and a C parameter of 3 gives the best results. In the case of the liver 

disorder dataset, a 5-fold CV value with a poly kernel, a degree parameter of 3, and C parameter 

of 3 gives the maximum score. Lastly, for the MINST dataset, setting a 10-fold CV value, 

tuning the kernel parameter to poly, a degree parameter of 3, and exploring all possible inputs 

for the C parameter yield the maximum results. These optimal hyperparameter combinations 

are critical for maximizing the performance of our SVM model in classifying these datasets. 

In order to determine which model, train-test-split or CV, performs better with our chosen 

hyperparameter combinations, we compared their average model evaluation accuracies. 

 

Our final results for choosing the optimal model to optimize SVM performance across four 

datasets are shown in Fig. 20. It suggests that the accuracy of SVM on the breast cancer, 

liver disorder, and MINST datasets, where the number of samples ranges from 1 797 to 345 and 

the number of features ranges from 64 to 6, was found to be significantly improved by using 

the train-test-split model with varying validation sizes of 0.2, 0.3, and 0.4 and combinatorial 

hyperparameter tuning of C, degree, and kernel hyperparameters. On the other hand, the heart 

disease dataset with only 270 samples and a moderate number of features (13) shows the best 

SVM accuracy when using a CV model with CV fold value 3, 5, and 10 and combinatorial 

hyperparameters tuning. 

 

 

Fig. 20 Contrast of train-test-split and CV model average accuracy 

 

The overall average accuracy of the train-test-split model is 80.00%, which is higher than that 

of the CV model, with an overall average accuracy of 77.00%. These findings suggest that the 

train-test-split model is a more effective and efficient approach for SVM optimization than CV. 

 

Discussion 
We found that the performance of SVM on different datasets can be significantly maximized 

by tuning the hyperparameters kernel, C, and degree. Except for a single dataset, where CV 

performs admirably, train-test-split with varying validation sizes achieves impressive results. 

It depends on the sample size and dataset features. We successfully determined which 

hyperparameters and model values, such as the cross-fold value for CV and the validation size 

for train-test-split, were best for each dataset. SVM’s accuracy has been shown to improve 

significantly using a variety of accuracy metrics.  
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In terms of novelty, our study builds upon existing research by examining the performance of 

SVMs on multiple datasets with varying characteristics. While SVMs have been widely studied, 

our analysis focused on identifying the optimal hyperparameter combinations and validation 

strategies specifically for each dataset. By doing so, we could highlight the key factors 

contributing to improved SVM performance. Our findings will aid data scientists in selecting 

the optimal model and hyperparameters for their datasets, considering the available feature and 

sample sizes. This highlights the need to explore and optimize hyperparameters to achieve 

optimal results thoroughly. 

 

Additionally, our results emphasize the importance of considering the dataset’s characteristics 

when selecting the most suitable validation approach. We found that train-test-split with 

varying validation sizes yielded higher accuracy for datasets with higher samples and features, 

such as breast cancer and MINST. In contrast, the heart disease dataset demonstrated improved 

performance with CV, suggesting that the dataset size and complexity play a crucial role in 

determining the optimal validation strategy. 

 

Comparing our results with previous studies, we observed consistent trends regarding the 

impact of hyperparameters on SVM performance. Our findings align with existing knowledge 

that linear and polynomial kernels yield better results than the sigmoid kernel [5, 27]. 

This reaffirms the established paradigm and supports the notion that the sigmoid kernel may 

not be the most effective choice for SVM applications in practice. The user involvement and 

new framework fulfills the gaps of automatic algorithms for SVM performance enhancement 

with more computational time and no manual tuning [14, 29]. 

 

While our study provides valuable insights into SVM performance, it is essential to 

acknowledge its limitations. The analysis was conducted on specific datasets, and the optimal 

hyperparameter combinations may vary for different datasets and classification tasks. 

Therefore, further studies are needed to validate our findings across broader datasets. 

 

Future research should aim to optimize SVM performance on large-scale datasets and 

high-dimensional feature spaces, addressing big data challenges. Additionally, investigating the 

incorporation of ensemble techniques or deep learning models can improve SVM performance 

and increase the scope of its applications in real-world applications. 

 

In conclusion, our study underscores the significance of hyperparameter tuning and model 

selection in achieving optimal SVM performance. By identifying the optimal hyperparameter 

combinations and validation approaches for each dataset, we obtained valuable insights into 

maximizing SVM’s model accuracy, F1 score, and AUC scores. These findings contribute to 

the broader understanding of SVMs in ML applications and provide a foundation for further 

research and improvements in classification tasks. 

 

Conclusion 
Our results show that SVM’s performance can be improved on datasets with varying sample 

sizes and feature counts by employing combinatorial hyperparameter tuning and various model 

selection techniques, such as CV and train-test-split. The intended framework enables 

the selection of the hyperparameters kernel, C, and degree with various inputs, 

and their combination enhances the overall performance of SVM for binary and multi-class 

classification tasks. 
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