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Abstract: Segmentation is crucial for brain gliomas as it delineates the glioma’s extent 

and location, aiding in precise treatment planning and monitoring, thus improving 

patient outcomes. Accurate segmentation ensures proper identification of the glioma’s size 

and position, transforming images into applicable data for analysis. Classification of brain 

gliomas is also essential because different types require different treatment approaches. 

Accurately classifying brain gliomas by size, location, and aggressiveness is essential for 

personalized prognosis prediction, follow-up care, and monitoring disease progression, 

ensuring effective diagnosis, treatment, and management. In glioma research, 

irregular tissues are often observable, but error-free and reproducible segmentation 

is challenging. Many researchers have surveyed brain glioma segmentation, proposing both 

fully automatic and semi-automatic techniques. The adoption of these methods by radiologists 

depends on ease of use and supervision, with semi-automatic techniques preferred due to 

the need for accurate evaluations. This review evaluates effective segmentation and 

classification techniques post-magnetic resonance imaging acquisition, highlighting that 

convolutional neural network architectures outperform traditional techniques in these tasks. 

 

Keywords: Brain glioma analysis, Classification, Deep learning, Segmentation techniques, 

Magnetic resonance imaging. 

 

 

Introduction 
Medical imaging technologies, especially magnetic resonance imaging (MRI), 

have significantly improved the detection and prognosis of brain gliomas. The application of 

artificial intelligence (AI), particularly deep learning (DL) and machine learning (ML), 

has further enhanced the accuracy and speed of medical diagnoses [16]. Conventional glioma 

segmentation and classification methods, such as manual or threshold-based techniques, 

are being replaced by ML and DL methods due to their superior performance. 

These newer methods, including random forests (RFs), support vector machines (SVMs), 

and convolutional neural networks (CNNs), can learn complex features directly from raw 

MRI images without the need for manual feature engineering [4, 26]. 
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Glioma segmentation and classification have been studied extensively using conventional ML 

and DL methods. Conventional methods typically involve manual or threshold-based 

segmentation techniques, which can be time-consuming and prone to inter-observer variability. 

These methods are still widely used in clinical practice but have largely been replaced by 

automated segmentation techniques based on ML and DL. ML techniques have shown promise 

in glioma segmentation and classification, including RFs, SVMs, and k-nearest neighbor 

(k-NN) classifiers. These methods can be trained using various features extracted from 

the MRI images, such as intensity, texture, and shape, to identify and classify different types 

of gliomas. However, these methods typically require extensive feature engineering, which can 

be time-consuming and limit performance. 

 

DL methods, especially CNNs, have emerged as the most effective approach, offering improved 

accuracy in tasks such as glioma detection, segmentation, and grading [40]. 

Despite their advantages, the adoption of segmentation methods in clinical practice is slow due 

to the need for ease of use and user supervision rather than a lack of explainability. 

Explainability is a crucial factor, particularly for classification methods, to ensure clinicians 

can interpret and understand AI-driven decisions, addressing the challenge of their 

black-box nature. Techniques like saliency maps provide visual representations of input regions 

influencing the output, making it easier for clinicians to understand and interpret the decisions 

made by the classification model [40]. 

 

Statistics 
Gliomas are the most common malignant primary brain tumors in adults, accounting for 81% 

of malignant brain tumors [62] and a significant percentage of cancer-related deaths in 

young adults [63]. Although most gliomas are cancerous, some subtypes may not necessarily 

act in a cancerous manner. Despite being rare, they have a considerable effect on mortality 

and morbidity [41]. Glioblastoma (GBM), the most aggressive form, makes up 60-70% of 

malignant gliomas in the United States [62]. Gliomas also account for 2.5% of all cancer-related 

fatalities in people between the ages of 15 and 34, making them the third-most prevalent cause 

of cancer-related deaths in this age group. According to GLOBOCAN 2018 [11], the prime 

cause of premature death due to cancer is ranked first or second in almost 100 countries. 

Conforming to these proceedings, new glioma instances in India had 28.142 with a very high 

mortality rate (24.003 deaths). 

 

Another analysis by the clinical cancer investigation journal in Eastern India contained 

130 illustrations of gliomas. These illustrations spread between the ages of 4 to 78 years, 

with an average age of 42.38 years, mainly affecting the male population. According to 

GLOBOCAN 2018, the cancer prevalence and mortality estimates are created by 

the International agency for research on cancer [22]. The worldwide cancer numbers are 

predicted to be 28.4 million instances in 2040, which amounts to a 47% exponential incline 

from 2020, 64% to 95% versus transitioned (32% to 56%) nations due to globalization, 

owing to a growing economy demographic change.  

 
Gliomas are categorized by the World Health Organization (WHO) into grades I to IV based 

on their aggressiveness, with GBM being the most aggressive (Grade IV) [49]. 

Manual diagnosis and delineation of gliomas are laborious and impractical in clinical settings, 

highlighting the need for automated segmentation tools [50]. Following standard 

treatment protocol, which entails surgical resection accompanied by radiation 

and chemotherapy, GBM patients had a mean life expectancy of 14 months and 4 months 

without standard treatment. 
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Despite various experimental therapies over the past 20 years, patient prognosis for gliomas has 

remained largely unchanged. Precise identification of glioma sub-region boundaries in MRI 

(Fig. 1) is crucial for several clinical applications, such as surgical planning and 

monitoring progression. However, manual diagnosis and delineation are laborious and 

impractical in clinical settings, underscoring the need for automated segmentation tools to 

streamline the process. 

 

 

Fig. 1 Various MRI sequences of a glioblastoma multiforme, showing different sub-regions 

of the glioma: a) T1-weighted MRI sequence, b) T2-weighted MRI sequence, 

c) T1 with contrast enhancement (Gadolinium), d) FLAIR sequence. 

Images are taken from the MICCAI BraTS [7]. 

 

Deep learning has significantly improved the processing and analysis of biomedical images, 

particularly for diagnosing and treating ailments. Image segmentation, a key initial step in 

image processing, provides vital information about affected brain areas from MR images [55]. 

The segmentation of glioma images can be done manually, semi-automatically, 

or automatically [9]. The increasing variety of medical imaging technologies and the large 

volume of medical data make segmentation and classification complex [56]. 

Therefore, automated algorithms for detecting and classifying gliomas save time and help 

radiologists and clinicians make faster, more accurate, and objective diagnoses. 

 

Contributions and structure 
The paper makes several key contributions to the field of glioma detection and classification. 

It reviews various pre-processing techniques and their impact on segmenting and 

classifying gliomas. It also provides a comparative analysis of different segmentation and 

classification techniques. Additionally, the paper examines the evaluation metrics used for 

identifying gliomas and the datasets these algorithms were applied, while highlighting 

the merits and demerits of techniques used in MR imaging for glioma detection. 

 

The review paper aims to present a comprehensive overview of automatic glioma segmentation 

and classification techniques, analyzing their strengths and weaknesses. The paper discusses 

the datasets and pre-processing techniques, offers a critical analysis of segmentation techniques, 

and cover classification techniques, evaluation metrics, and methodologies of segmentation and 

classification.  

 

Datasets for glioma segmentation and classification 
Fig. 2 shows the datasets that have been used by the researchers for the segmentation and 

classification of glioma. BraTS 2015 and 2017 are the most used datasets. 
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Fig. 2 Datasets used by researchers for MR brain glioma segmentation and classification 

 

Preprocessing techniques applied for glioma MR imaging analysis 
The supreme purpose of computer vision is to utilize computers to emulate human vision. 

The MR image contains a high amount of information. The existing MRI scanners produce 

images equal to 65.535 gray levels [9]. The human eye cannot extract such data from the scans 

as it is not designed to determine the difference between thousands of gray levels. 

Consequently, a high-powered computer is the most reasonable choice for comprehending and 

assessing high-quality scans. 

 

Glioma classification consists of pre-processing, image segmentation, feature extraction, 

feature or dimensional reduction, and classification, followed by performance analysis which 

results in the formulation of a diagnosis, as shown in Fig. 3, are explained below. The first stage 

in any research work driven by data is pre-processing. The raw image data needs to be freed of 

noise to guarantee uniformity in all the images present in the dataset. Image denoising, 

skull stripping, and intensity normalization are essential in analyzing brain images [48]. 

Once these operations are performed, image segmentation and extraction of features 

become effective. 

 

 

Fig. 3 Generic process flow of brain glioma segmentation  

and classification system for diagnosis 
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Image denoising 
Noise in digital images, caused by random signals, results in information loss and distortion. 

Common noise types include salt and pepper, Gaussian, speckle, Poisson, and others, 

arising from factors like hardware issues, light scattering, and MRI bias fields [82]. This noise 

can obscure lines and edges, alter the intensity [39], blur objects, and create artifacts. 

 

Accurate image analysis of pre-and post-treatment scans is critical, yet challenging, due to 

patient movement. Proper alignment through image registration is necessary for 

assessing gliomas [58]. Noise complicates brain segmentation, making it hard to distinguish 

gliomas from healthy tissue. Denoising methods, such as adaptive filtering, diffusion filtering, 

wavelet-based methods, and non-local means (NLM), are used to enhance contrast and 

reduce noise [10]. Adaptive filtering is one of the standard denoising methods for magnetic 

resonance images during pre-processing. The diffusion filtering method preserves contours, 

making it robust [44]. Wavelet-based methods perform well in removing the Rician noise which 

reduces the image contrast as it is dependent on the signal [59]. Wavelets can preserve natural 

features while denoising images [61]. MRI denoising performed using the NLM method has 

found appreciation in [51] as it has been applied for automatic denoising. NLM can precisely 

fit into the noise characteristics in MR imaging [69]. Independent component analysis (ICA) is 

another denoising technique particularly applicable to a specific sequence of MRI [46]. 

Widely, ICA is applied to functional MR imaging for automatic denoising data by combining 

with the hierarchical fusion of classifiers [73]. Despite these techniques, some noise remains, 

negatively impacting glioma segmentation. 

 

Skull stripping 
In image analyses of the brain, skull stripping is an essential pre-processing stage [8] as seen in 

skull stripping is a critical stage for segmenting gliomas [35]. Non-cerebral regions are 

the skull, the scalp, and the membranous meninges. The method of delineation and subtraction 

of the non-cerebral brain tissue is called skull stripping [20]. The precision with which skull 

stripping is performed influences the competency in glioma detection and pre-surgery 

metrics preparation. The morphometric analysis of the brain and reconstruction of the cortical 

surface for the quantitative study is highly dependent on the accuracy of skull stripping [75]. 

The comparative analysis [21] on the same has shown that it encountered numerous challenges 

because of the complex nature of the brain structure. The acquisition of MR image volumes 

could be more consistent due to the parameters of the various MR machines. The characteristics 

change from patient to patient, posing another challenge to skull stripping [64]. Reducing the 

probability of misclassifying diseased regions in the brain is better with skull removal [78]. 

The latest conventional and modern skull-stripping techniques have been examined to reduce 

misclassification [21]. Conventional skull-stripping techniques for glioma segmentation 

include thresholding, morphological operations, and atlas-based methods. Thresholding 

methods utilize a predetermined intensity threshold to distinguish between brain tissue and the 

background. Morphological operations employ mathematical techniques to smooth and fill 

holes in the thresholder image. Atlas-based methods involve registering a pre-segmented atlas 

image onto the patient’s image to remove non-brain tissue [48]. 

 

AI-based techniques for skull-stripping include deep learning methods such as CNN, 

generative adversarial networks (GANs), and U-Net. These methods have demonstrated 

promising results by learning features from large datasets, effectively handling complex 

variations in skull shape and size. Additionally, DL-based methods can be utilized for 

registration steps, using image similarity metrics to align the patient's image with 

a reference image [31]. 
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Intensity normalization 
The effects cause a significant difference in the appearance of healthy and glioma tissues 

of the brain. Pre-processing MR image volumes involves a crucial intensity 

normalization stage [60]. Regarding brain segmentation, the algorithms depend on the intensity 

of the scanned images. Due to this, segmentation becomes a demanding task. In the algorithm 

developed by [18], global and local constraints were made better for the MR image volumes 

using their novel robust normalization technique. In [68], N4ITK algorithm has been applied to 

correct the intensity inhomogeneity. In a work proposed in [29], intensity normalization has 

been done through a CNN-based architecture. 

 

Bias field correction in MRI 
Low-frequency bias field signals corrupt the MR image volumes by interfering with the high 

magnetic field of the MRI scanners. The volumes are further contingent on corruption caused 

by the noise from the patient’s anatomy, which results in inhomogeneity causing variations in 

the intensity levels [45, 82]. The goal of correcting the bias fields is to reduce the distortion in 

segmentation output and to detect statistical features in MR brain images [45]. The two essential 

techniques applied for bias field correction are prospective and retrospective procedures [82]. 

The prospective mode of decreasing the bias field is modifying the MRI machines’ image 

acquisition stage. The retrospective mode works on the acquired MR images as 

a post-processing technique. This method can implement bias field correction by applying 

filters, one of the oldest techniques. The intensity and gradient-based surface 

fitting techniques [54] are applied as a parametric approach along with segmentation and 

intensity inhomogeneity correcting histogram. In a study based on CNN approach [29], 

bias correction has been accomplished for glioma scans within each input channel. 

In the study [90], histogram matching algorithms have been employed. 

In the proposed work [66], deep CNNs are utilized for inhomogeneity correction with histogram 

normalization and transformation. In the work proposed by [43], two techniques have 

been explored, one uses a histogram matching and the other method is normalizing each 

MRI sequence with the mean cerebrospinal fluid (CSF) value. 

 

Image registration 
Image registration, involving the superimposition of MR image data to align spatial, temporal, 

and multi-sequence parameters, is a critical aspect of medical imaging studies. This process is 

essential for establishing correspondence between features taken during pre-operative and 

post-operative treatment stages, making it a crucial pre-processing step in glioma segmentation. 

Both conventional and AI-based techniques can be employed for this purpose. 

Conventional techniques include rigid or affine transformations for basic alignment and 

advanced deformable registration techniques such as demons, B-spline, and diffeomorphic 

registration. Commonly used software tools include ANTs and Greedy, which handle 

multi-modal image registration effectively. Additionally, OSIRIS and OsiriX, along with ITK, 

ITK-snap, and 3D slicer, are widely used for their robust handling of complex 3D images and 

efficient visualization [37, 99]. 

 

AI-based techniques, particularly those using deep neural networks, have shown promise in 

learning registration parameters directly from input data, thus reducing the need for manual 

parameter tuning. CNN-based approaches can perform direct registration or guide conventional 

methods. Examples of these AI-based methods include VoxelMorph [24] and ANTsPyNet [96], 

both of which have demonstrated improved registration accuracy for glioma segmentation. 
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Despite advancements in AI, challenges remain in image registration, such as variations in 

patient location and organ orientation, which make it difficult to have a single technique for 

all problems [84]. This issue is particularly pronounced in high-grade gliomas like GBM, 

where rapid tumor progression necessitates precise morphological feature extraction and 

alignment accuracy [6]. The image registration problem is approached through four 

foundational frameworks: feature space registration, search space registration, search strategy-

based registration, and similarity-based registration [70]. AI-based techniques have shown 

promising results in reducing processing time and improving registration accuracy. 

However, conventional techniques are still widely used in clinical practice due to their 

simplicity and robustness. 

 

Critical analysis of glioma segmentation techniques 
Glioma segmentation is crucial for accurately diagnosing, outlining diseased areas, 

planning surgeries, and assessing treatment plans. However, the irregular and complex 

structures of gliomas make segmentation challenging [7]. Despite medical imaging advances, 

segmentation is challenging as gliomas consist of irregular and complex structures 

and boundaries. 

 

Pixel-based segmentation 
This method, also known as threshold-based segmentation, labels pixels based on 

intensity values. It is computationally fast and straightforward but limited in enhancing glioma 

areas as it only uses intensity knowledge and ignores pixel correlation. It is often used to remove 

the background from MR images [26, 95]. 

 

Region-based segmentation 
This technique segments images into regions based on similarity criteria, starting from seed 

pixels and expanding to include neighboring pixels that meet the criteria. It is effective in 

segmenting similar areas and producing corresponding regions, but the process is recursive and 

stops when no more pixels can be included [38, 67, 81]. Region-based segmentation divides 

an image into regions (R1, R2, …, RN) based on similarity criteria, ensuring no regions overlap 

and maintaining homogeneity within each region. The process stops when no more pixels meet 

the criteria for inclusion. However, this method’s accuracy can be reduced due to edge blurring 

caused by the partial volume effect and its sensitivity to noise, which can result in holes in 

the segmented regions. Watershed and region-growing algorithms are derived from 

this technique [74]. Also, this technique is sensitive to noise and is prone to forming holes in 

the obtained region [14]. 

 

Edge-based segmentation 
Edge-based segmentation detects rapid intensity changes to identify borders, providing sharp 

edges useful for glioma detection. However, it often fails to form closed contours around 

gliomas and is sensitive to noise, necessitating post-processing to link edges [5]. 

Another disadvantage of edge segmentation techniques is that it is sensitive to image noise. 

The mapped image will have broken edges if its intensities change only subtly 

among regions [83]. 

 

Deformable model 
Deformable models use curves influenced by internal and external forces to fit irregular 

organ structures. They adapt well to the variability of human organs but face challenges in 3D 

segmentation due to complex control of regional modifications. Parametric models, such as 
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active contour models (snakes), and geometric models (level sets) are used to achieve more 

accurate segmentation by iteratively minimizing energy functions. 

 

The level-set deformable model’s chief disadvantage is high computational complexity. 

The topological changes are naturally realizable, making this model highly advantageous. 

Earlier studies have shown that to obtain a 3D volume surface, slice-by-slice segmentation is 

further merged to form a continual surface. Nevertheless, the segmentation accuracy is low as 

the surface is discontinuous due to the missing anatomical data from the MR slices [17, 53]. 

 

Machine learning-based segmentation 
Machine learning methods are effective for automatic medical image segmentation, 

leveraging historical data for accurate patient evaluations. Image segmentation techniques can 

be categorized into supervised, semi-supervised, and unsupervised methods.  

Supervised methods use manually labelled datasets, while unsupervised methods label data 

automatically based on pixel intensities or textures [98]. The features used for segmentation 

here are based on pixel intensities or textures. 

 

Fuzzy C-means 
Fuzzy C-means (FCM) clusters pixels based on attributes like intensity and texture without 

human intervention, making it an unsupervised method. However, it is sensitive to noise and 

heterogeneous intensity, leading to inaccurate segmentation [3]. FCM is sensitive to noise and 

heterogeneous intensity and is computationally expensive. This is its chief disadvantage, which 

results in inaccurate segmentation. 

 

Atlas-based segmentation 
Atlas-based segmentation uses prior brain structure knowledge to aid in the new brain 

data segmentation, reducing computational overhead. However, it introduces bias and requires 

significant construction time [12]. This segmentation method is yet to be tested for generic 

applications as it relies on training data [57]. Additionally, bias is introduced as the technique 

looks for similarities in shape. Further, the main disadvantage is that the atlas needs more 

construction time [3]. 

 

Deep learning segmentation – CNNs and transformers 
Deep learning architectures such as CNNs and transformers are prominent in 

glioma segmentation. CNNs, like U-Net, excel in detecting and segmenting gliomas from 

MRI images [40]. Transformers, using attention mechanisms to capture spatial relationships, 

also show promising results, with models like vision transformer (ViT) and hybrid ViT 

achieving state-of-the-art performance [32]. 

 

In addition to ViT and hybrid ViT, there is the Uformer, a transformer-based architecture 

explicitly designed for medical image segmentation tasks. The Uformer uses a multi-scale 

self-attention mechanism to capture contextual information at multiple resolutions and has 

achieved state-of-the-art performance on the BraTS 2020 dataset. Overall, transformer-based 

models have shown great potential for glioma segmentation and are expected to play 

an increasingly important role in this field. However, as with any deep learning approach, 

data quality, model architecture, and hyperparameter tuning are critical factors that can 

significantly affect the performance of transformer-based models [94]. 
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CNN-based techniques 
CNN-based models, trained on large datasets, extract features for glioma classification, 

significantly improving accuracy. However, they require extensive labelled data and careful 

handling of data variability and bias. Combining CNNs with recurrent neural networks (RNNs) 

and U-Net architectures can enhance accuracy by considering spatial and temporal information 

[13]. In this study, the authors used a deep CNN to classify gliomas based on MRI scans. 

They trained their model on a large dataset of over 4.000 scans from 4 different glioma types 

(glioblastoma, meningioma, pituitary adenoma, and brain metastasis). They achieved high 

accuracy in distinguishing between these glioma types. 

 

This approach effectively improves the accuracy of glioma classification by considering 

the spatial relationship between different regions of the glioma. Combining CNNs, RNNs, and 

U-Net architectures can provide a powerful tool for glioma classification by considering both 

spatial and temporal information in MRI images. The work in [7] shows a CNN-based approach 

to glioma classification. 

 

Critical analysis of glioma classification techniques 
In the classification stage, techniques are applied to categorize brain MRIs as either normal 

or abnormal. These methodologies can be classified into supervised and unsupervised methods. 

Supervised methodologies include SVMs, artificial neural networks (ANN), and k-NNs. 

Unsupervised methods include self-organizing maps (SOM) and k-means clustering. 

Supervised algorithms involve a training stage with precisely labelled class data, which is then 

applied to unlabelled data in the testing stage, generally resulting in higher accuracy than 

unsupervised classifiers [26]. In contrast, unsupervised techniques do not require class-labelled 

data as they can automatically determine the number of classes needed for classification, 

resolving complex problems efficiently [36]. 

 

Convolutional neural networks 
CNN are unique because they automatically learn image features using trainable convolutional 

filters, bypassing the stages described for traditional machine learning techniques. 

This capability allows CNNs to achieve high accuracy in various classification tasks without 

the need for predefined features. For instance, a recent study used a pre-trained ResNet-50 CNN 

architecture fine-tuned on a glioma MRI dataset to classify 6 different types of brain tumors, 

achieving a mean accuracy of 93.2%, outperforming traditional machine learning classifiers 

such as SVMs and random forests [72]. 

 

This review discusses the most utilized supervised and unsupervised classification algorithms 

for gliomas in MRI. Classifying different gliomas is a crucial problem as it helps develop 

personalized treatment strategies and predict survival outcomes. There is significant variability 

in glioma types, which makes this problem challenging. However, recent CNN-based 

techniques have shown promising results in classifying different gliomas [79]. 

 

In addition to CNN-based techniques, machine learning algorithms such as decision trees, 

random forests, and support vector machines have also been used for glioma classification. 

However, CNN-based techniques have shown superior performance in this task, likely due to 

their ability to extract more complex and meaningful features from the input data. 

Overall, classifying different gliomas using deep learning techniques holds promise for 

improving patient outcomes and developing personalized treatment strategies [77]. 
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Artificial neural network 
ANN are popular for image classification due to their ability to learn from historical cases and 

create new rules. They use texture and intensity attributes to segment images, which are then 

fed to the classifier’s input nodes. Mathematical computations at the hidden nodes result in 

the final classification at the output node. ANNs excel in complex, multivariate, 

non-linear environments, often performing better in noisy fields [27]. The texture and intensity 

attributes are employed to segment the images. These attributes are fed to the classifier’s neural 

network input nodes, where mathematical computations are performed at the hidden nodes. 

The output’s final node results in the image’s classification [26]. No standard techniques are 

available for the best image classification. ANN works on complex computations of trial 

and error, and to work around this, convolutional neural networks (CNN) were developed in 

the 1980s to analyze visual data. CNN is advantageous as it can automatically detect features 

without human supervision [2]. 

 

The study [76] used a gray level co-occurrence matrix (GLCM), and a genetic algorithm for 

pre-classification, using NN classifiers to categorize MRI scans into healthy or tumorous tissue. 

A neural network classifier was utilized to categorize the MRI scan into healthy or 

tumorous tissue [86]. The algorithm for feature extraction employed cubic 

order differentiations. The features were selected using the rule strategy. The research employed 

two classifiers for the final glioma classification: feed-forward backpropagation network 

with k-NN. The feature extracted algorithm was obtained using the discrete wavelet 

transform (DWT). Reduction from 1024 to 7 features was made using the principal component 

analysis (PCA) [33]. 

 

Additionally, PCA was employed for extraction, and the classification of brain gliomas was 

performed by probabilistic neural network (PNN) [23]. A hybrid machine learning method has 

been developed for delineating brain gliomas in an MRI. The model comprises image data 

pre-processing in the suggested approach, with the median filter applied for noise 

reduction [19]. DWT is applied, along with its reduction by PCA. Further, the back propagation 

neural network (BPNN) has been employed to obtain the MR images’ normality or abnormality, 

resulting in its classification. ANN’s physical implementation is straightforward. 

These networks generate accurate outcomes of the generalization property, which can easily 

map the allocation of hybrid styles. ANNs perform perfectly in complex, problematic, 

multivariate non-linear environments. The performance of these NNs is better in noisy fields. 

 

K-nearest neighbor 
The k-NN algorithm is a straightforward classification method that calculates distances between 

new instances and existing ones in the training set. It selects the k closest neighbors based on 

the distance metric, determining the majority class among those neighbors as 

the predicted class. While effective, especially when combined with parameter optimization 

techniques like cross-validation, k-NN may not be the most accurate or efficient for large and 

complex datasets compared to advanced techniques like CNNs and RNNs [1, 28]. 

 

Support vector machine 
SVMs, introduced by Vapnik and Cortes, are effective for non-linear decision surfaces and have 

applications in various fields including medical analysis [15], which have found applications in 

object detection, segmentation of images, voice recognition, and medical analysis [74]. 

SVMs have shown that they can be applied to differentiate and classify voxels into normal and 

abnormal tissue [42]. SVMs can classify and differentiate voxels into normal and abnormal 

tissue by finding a hyperplane that separates different classes in the feature space. 
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Studies have shown SVMs achieve high accuracy in classifying glioma grades, but they can 

struggle with large datasets and overlapping classes [93].  

 

The advantage of the SVMs classifier is that it is highly effective in the higher dimension and 

works if the features are more significant than the training MR data. Increased accuracy is 

obtained when the classes are separable. SVMs are disadvantageous when the dataset is 

enormous as the computation time increases. The classifier does not perform well when 

the classes overlap. 

 

Self-organizing maps 
Self-organizing map are unsupervised techniques for clustering brain MRI data into normal and 

abnormal categories. They provide a compact representation of data distribution and 

are useful for visualizing high-dimensional data. During training, model vectors are 

progressively adjusted, creating an organized, non-linear regression of the data. This method 

helps in accurately labelling gliomas by consistently grouping specific areas like gliomas and 

white or gray matter [34]. Thus, SOM assists in accurate glioma labelling. 

 

K-means clustering 
K-means clustering is an unsupervised learning technique used for brain glioma classification. 

It divides the dataset into k-clusters, where each data point belongs to the cluster with 

the closest mean. Studies have applied k-means clustering to segment glioma regions and 

extract features for subsequent classification using machine learning algorithms like SVM. 

K-means clustering effectively identifies different tissue types in MRI, aiding in glioma 

classification by ensuring data points are accurately allocated within clusters [87]. They applied 

k-means clustering to segment the glioma region and then extracted features based on intensity 

values and texture features. They used these features to train a SVM classifier to distinguish 

between different grades of gliomas. Another study used k-means clustering to segment gliomas 

in MR images and classified them into low-grade and high-grade gliomas [65]. 

They applied k-means clustering to segment the glioma region and then extracted shape and 

texture features to train an SVM classifier. K-means clustering was used in both studies to 

segment gliomas and extract features for subsequent classification using a machine 

learning algorithm [97]. 

 

The classification of brain MRIs into normal and abnormal categories is essential for 

developing personalized treatment strategies and predicting survival outcomes for 

glioma patients. While traditional machine learning techniques like SVM, ANN, 

and k-NN have been widely used, deep learning techniques, particularly CNNs, have shown 

superior performance due to their ability to extract complex features automatically. 

Unsupervised techniques like SOM and k-means clustering also play a crucial role, 

particularly when dealing with high-dimensional data or when labelled data is scarce. 

The choice of technique depends on the specific requirements of the task, 

the nature of the dataset, and the desired accuracy and computational efficiency. 

 

Performance evaluation in image processing 
Performance metrics are essential for quantitatively assessing the effectiveness of traditional 

and deep learning techniques in image processing. These metrics evaluate the robustness and 

adaptability of different methodologies, ensuring the reliability of their results. 

Key performance metrics include accuracy, precision, sensitivity, recall, specificity, 

the dice similarity coefficient (DSC), F1 score, Hausdorff distance, and the confusion matrix. 
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These metrics offer a comprehensive evaluation of an algorithm’s performance, highlighting its 

strengths and weaknesses. 

 

Accuracy measures the proportion of correctly classified instances, while precision 

(positive predictive value) determines how often positive predictions are correct. 

Sensitivity (recall or true positive rate) measures the algorithm’s ability to identify positive 

instances correctly, and specificity (true negative rate) assesses its ability to identify negative 

instances accurately. The Dice similarity coefficient evaluates the overlap between predicted 

and ground truth segmentations, with values ranging from 0 (no overlap) to 1 (perfect overlap). 

The F1 score, the harmonic mean of precision and recall, is particularly useful for 

imbalanced datasets. The Hausdorff distance measures the maximum distance between 

predicted and ground truth segmentations, indicating the presence of outliers. 

The confusion matrix provides a detailed breakdown of true positives, false positives, 

true negatives and false negatives, enabling the derivation of other metrics. In the context of 

brain glioma segmentation and classification, these metrics are crucial for developing accurate 

and reliable models. Segmentation performance is often assessed using the Dice similarity 

coefficient and Hausdorff distance, while classification performance is evaluated using metrics 

like accuracy, sensitivity, specificity, precision, F1 score, and the area under the receiver 

operating characteristic curve (AUC-ROC). These evaluations guide the selection of the best 

models, ensuring improved diagnostic accuracy and aiding in the development of personalized 

treatment strategies. 

 

Discussion 
Conventional image processing techniques for brain MRI segmentation utilize spatial filters, 

DWTs with GLCMs features, image textures, and local histograms. Machine learning 

techniques, such as support vector machines and random forests, are employed for pattern 

classification in image segmentation [26, 71, 81, 86, 89, 90, 92]. They can quickly process 

a large amount of data and work with different medical imaging modalities [52]. 

While conventional methods are reliable and have been used clinically, they rely on 

mathematical models and prior knowledge, which may not suit complex or heterogeneous 

datasets. AI-based methods like CNN and transformers can learn directly from data, making 

them adaptable to various datasets and achieving high accuracy. However, AI methods require 

substantial annotated data, and their “black box” nature can be problematic in clinical settings 

where interpretability is crucial. 

 

Conventional brain glioma segmentation methods, such as manual segmentation, thresholding, 

region growing, and statistical methods like active contours, have been used for decades but are 

often time-consuming and require expert knowledge. Recent advances in deep learning, 

specifically CNNs and transformers, have shown promise in brain glioma segmentation and 

classification by automatically learning relevant features and handling large datasets efficiently. 

Despite their advantages, AI methods require large labelled datasets, and significant 

computational resources, and can struggle with data outside their training distribution. 

 

For brain glioma segmentation and classification, combining conventional and AI-based 

methods can leverage the strengths of both approaches. Conventional methods offer 

interpretability and context, while DL methods provide high accuracy and efficiency. 

Supervised and unsupervised clustering methods like ANN and fuzzy C-means offer precise 

outcomes in heterogeneous gliomas. Various segmentation methods, including pixel-based, 

region-based, edge-based, and deformable models, have unique advantages and limitations, 

such as computational speed, handling complex structures, and sensitivity to noise. 
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Brain glioma segmentation involves problems with a severe difficulty level, and it is 

a time-absorbing task when executed with ANNs. The unsupervised methodologies of fuzzy 

C-means, the most favored, permit fuzzy theories to define clusters and give thoroughly precise 

outcomes in cases of heterogeneous gliomas. The supervised clustering method of ANN can 

design non-trivial distributions contributing direct practical advantages (Table 1) [92]. 

 

Table 1. Segmentation methods with advantages and disadvantages 

Segmentation 

method 
Description Advantages Disadvantages 

Pixel-based 

(threshold-based) 

Find threshold values 

based on the histogram 

peaks of the image. 

Simple and 

computationally fast. 

Restricted applicability 

to enhancing glioma 

areas. 

Region-based Partitioning the image 

into homogeneous 

regions and topological 

interpretation. 

Correctly segments 

regions with similar 

properties; stable 

results; continuous 

boundaries. 

Partial volume effect; 

intensity variation can 

cause holes or 

over-segmentation; 

complex gradients. 

Edge-based Detection of 

discontinuity. 

Suitable for images 

with better contrast 

between regions. 

Inaccurate 

segmentation with 

objects having too 

many edges. 

Deformable 

models: 

parametric-based 

and level-set based 

Building models with 

prior knowledge of 

shape, orientation, 

location, and statistical 

data. 

Adapts to irregular 

biological structures; 

topological changes 

possible. 

Parametric model may 

converge to indefinite 

boundaries; long 

compute time. 

Machine learning-

based 

Simulation 

of a learning process 

for decision making. 

Unsupervised; 

converges boundaries 

of glioma; models 

non-trivial 

distributions; fast 

training time. 

Long compute time; 

sensitive to noise. 

Atlas-based Knowledge from prior 

labelled training 

images to segment 

selected image. 

Adaptive to variations 

in image intensity 

profiles. 

Bias in segmentation 

output; requires more 

construction time. 

Convolutional 

neural networks 

Extract features using 

convolution kernels or 

filters. 

Automatic feature 

extraction; efficient 

image processing; 

high accuracy. 

Long training process; 

high computational 

requirements; difficulty 

with small datasets. 

 

Model-based algorithms, including fully automatic glioma segmentation using geometric 

deformable models [48] or level sets, provide accurate results but are computationally 

expensive. Integrating human knowledge and prior understanding of tissue characteristics can 

enhance segmentation outcomes. Techniques like DWTs, GLCMs, PCA, and GA are used for 

feature extraction and reduction, while classifiers like ANNs, k-NNs, SVMs, and SOMs 

perform well in MR image classification tasks [30]. Research shows that convolution neural 

network-based techniques produce good outcomes. CNN is different from other classifiers 

because it automatically learns its features from an MR image. Table 2 provides comprehensive 
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overview of various classification methods used in the context of brain glioma analysis, 

detailing their respective advantages and disadvantages. 

 

Table 2. Classification methods with advantages and disadvantages 

Classification 

method 
Description Advantages Disadvantages 

Artificial neural 

network-based 

Based on powerful 

computational data 

models capturing 

complex 

relationships. 

Straightforward 

implementation; 

accurate results; 

excellent performance in 

noisy fields. 

Sophisticated network 

with high computational 

costs; complicated training 

sample collection; slow 

learning phase. 

K-nearest 

neighbor 

Classifies based on 

features and training 

data samples. 

Suitable for smaller 

data; simple 

implementation. 

Poor run-time performance 

with large datasets; 

potential for inaccurate 

results; sensitivity to 

redundant features. 

Support vector 

machine 

Converts data and 

finds optimal border 

between outputs. 

Powerful for linear 

and non-linear data; 

significant performance 

on large datasets. 

Accuracy affected by 

small datasets; difficulty 

in choosing optimal 

parameters for non-

linearity separable data. 

Self-organizing 

maps 

Finds clusters in 

training data for 

classification. 

Efficient for dividing 

M×N dimensional data 

into multiple segments. 

Number of NN units must 

equal desired clusters; 

execution time increases 

with image division. 

K-means 

clustering 

Partitions dataset into 

k-predefined distinct 

non-overlapping 

clusters. 

Fast algorithm suitable 

for real-time MR image 

data classification. 

Poor outcomes with 

improper choice of k- 

value. 

Convolutional 

neural 

networks 

Extracts features 

from images for 

pattern recognition. 

No human supervision 

required; automatic 

feature extraction; 

handles large datasets 

well. 

Requires large labelled 

datasets; costly and time-

consuming to obtain and 

annotate. 

 
In glioma imaging research, accurate cancer detection remains a primary goal. 

Segmentation methods help distinguish cancerous from healthy tissues using pixel intensity and 

threshold or region-growing algorithms. Model-based methods are employed when size and 

shape can identify gliomas. While segmentation techniques have evolved significantly, 

challenges in clarity and accountability for automated techniques must be addressed for 

clinical approval. 

 

Fig. 4 illustrates the various methodologies employed in the segmentation and classification of 

MR brain gliomas. It highlights both conventional and AI-based approaches, showcasing their 

respective advantages and disadvantages. One vital objective in glioma imaging research is 

detecting cancer precisely. Segmentation methods conform to the attributes that differentiate 

cancerous tissue from healthy tissues. The segmentation process removes 

the uncertainty in classifying pixels within the brain’s glioma region. Pixel intensity helps 

differentiate cancer from healthy tissues, and then threshold or region-growing algorithms are 
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applied for segmentation. Further, some gliomas can be recognized by sizes and shapes. 

In such cases, model-based methods were employed for the segmentation. 

 

 

Fig. 4 Most common techniques used for MR brain gliomas segmentation and classification 

 

Segmentation techniques are evolving and are expected to be used in clinical applications. 

Even though these techniques produced and accomplished exceptional feats, many challenges 

still need to be answered. Clarity and accountability for automated techniques for segmentation 

tasks are of prime importance for its approval in a clinical setting. 

 

MRI-based brain glioma analysis faces challenges such as movement artifacts, 

partial volume effects, and intensity inhomogeneity. To address these issues, high-resolution 

MRI machines and advanced pre-filtering methodologies are employed to remove artifacts and 

preserve fine anatomical structures. Achieving high-resolution output requires minimizing 

the signal-to-noise ratio. Proper segmentation of glioma, including edema and necrotic parts, 

is crucial for accurate diagnosis and effective therapy protocols. Segmentation challenges arise 

due to variations in shape, size, and location. Therefore, enhancing the robustness, accuracy, 

processing time, and precision of segmentation techniques is essential for improved outcomes. 

 

Conclusion 
The primary drive for automating brain glioma segmentation and classification lies in the need 

for standardized methodologies. While automated techniques show promising precision, 

they still require extensive validation from radiologists for routine clinical use. Two critical 

challenges are the substantial divergence from conventional expert practices and the current 

techniques’ inability to support medical treatment decisions transparently and understandably. 

These aspects are crucial for computer-aided treatment prognosis, where clear reasoning and 

rationale are imperative. 

 

This review critically examined various techniques and recent trends for classifying brain MR 

scan data as normal or abnormal, highlighting the use of ANNs, k-NNs, and SVMs. 

Traditional methods face significant limitations, such as execution time and detection accuracy, 

necessitating improvement. They also struggle with translating initial knowledge into 

probabilistic tasks and selecting highly representative features for classification. 

Deep learning techniques, particularly those using CNN architectures, have shown advantages 

in brain glioma segmentation. The effectiveness of these procedures can be validated by 

comparing outcomes with state-of-the-art methodologies using common brain glioma 

MR imaging databases. 
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