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Abstract: Alzheimer’s disease (AD) is the most common type of dementia that is not a result 

of natural aging. In most countries, it is one of the leading causes of death for seniors. 

One of the main methods for detecting AD is by magnetic resonance imaging (MRI). 

Several machine learning (ML) and deep learning (DL) techniques have been put out in recent 

years for the automated detection of AD, but the accuracy of these techniques is currently 

limited. So, the primary goal of this research is to offer a model for precise AD detection that 

is based on transfer learning. For the purpose of detecting AD in this paper, we have used two 

different models. We studied and evaluated models from two different platforms, GoogleNet 

and residual networks (ResNet). Different variants of ResNet (ResNet18, ResNet34, ResNet50, 

and ResNet101) were studied. In this study, specificity, accuracy, positive predictive rate, 

sensitivity, F1 score, balanced accuracy, Fowlkes-Mallows index, and Youden’s J statistics 

were investigated. ResNet18, ResNet34, ResNet50, and ResNet101 have shown a precision of 

97.28%, 98.25%, 98.41%, and 98.57%. GoogleNet has accuracy rate of 96.32%. The learning 

curve is also presented in this work, and shows a good fit for the ResNet101 model. 

The proposed networks were compared on the basis of computational time. ResNet101 

performed better than other networks in all the parameters and had the largest computational 

time. MRI images from the Alzheimer’s disease neuroimaging initiative (ADNI) database have 

been used and compared with similar work based on ML and DL. A comparison with the 

existing methods showed that the proposed method could help in the reliable detection of AD. 

 

Keywords: Alzheimer’s disease, Dementia detection, Convolutional neural network, 
Transfer learning. 

 

Introduction 
Alzheimer’s disease (AD) is the most common form of dementia, affecting a patient’s daily 

activities gradually. Most healthcare systems vastly underdiagnose dementia, owing to a lack 

of awareness programs and access to dementia treatment or diagnostic facilities [19]. 

The continuum of AD describes how the disease progresses from invisible brain changes in the 

affected person to brain changes that lead to memory problems and eventually physical 

incapacity [46]. Preclinical AD, mild cognitive impairment (MCI) AD, and Alzheimer’s 
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dementia, are the three broad phases of this continuum. As presented in Fig. 1, there are three 

levels of dementia associated with AD: mild, moderate, and severe. Approximately 10-17%  

of people with MCI eventually develop AD. However, other MCI patients stay stable years 

later. It is critical to identify people who are at high risk of transitioning from MCI to AD 

because doing so allows doctors to treat them early and use the appropriate medications to help 

improve patient conditions. In 2015 an estimated 5.3 million people had AD, and this number 

in 2050 is predicted to rise to 16 million [25]. 

 

Toward more precise AD detection, various improved imaging techniques were developed. 

Electroencephalogram (EEG) signals and machine learning (ML) models are one of the widely 

studied methods for the detection of AD [12, 32, 45]. To make a more certain prediction, 

various neuroimaging-based signals such as computerized tomography (CT), positron emission 

tomography (PET), diffusion tensor imaging, and magnetic resonance imaging (MRI) are used 

[4]. Because of its exceptional resolution, good contrast, and high availability in medical 

diagnosis, MRI is now widely used in hospitals for AD identification [50]. 

 

 

Fig. 1 Alzheimer’s disease continuum 

 

In the last decade, artificial intelligence (AI) has proven to be extremely useful in the diagnosis 

of AD. ML, artificial neural networks, and deep learning (DL) are the most widely used 

classification techniques [7, 8, 11, 14, 53]. DL has been found to be useful for large datasets, 

particularly image data [13, 19]. The researchers discussed DL methods for medical image 

analysis [35]. Although DL models are considered as “black boxes”, some statistical techniques 

can be used to estimate the network uncertainty. Investigators conducted a survey on DL for 

AD [51]. It can be concluded that ML techniques are useful in determining the underlying 

neurological causes of brain disorders, but DL methods overcome the necessity of feature 

engineering [39]. The need for hand-crafted features in standard ML algorithms is a 

disadvantage that may result in less than ideal performance. However, DL methods are quite 

successful because they automatically extract significant features from the data. 

 

The growing graphics processing unit data processing capability enabled the use of DL 

techniques for image classification applications [44]. [55] proposed deep transfer ensemble – 

an ensemble of deep neural networks (DNNs) trained with transfer learning (TL) for 

categorization of AD. A unique multimodal DNN with a multistage method was suggested 

by [37] to recognize dementia. With accuracy of 82.40%, this technique can identify who would 

get MCI and who will go on to develop AD three years later. For the class of people with AD, 

the model achieves a sensitivity of 94.23% and an accuracy of 86.30%. In order to diagnose 

AD, [5] suggested the convolutional neural networks (CNN) ensemble model for feature 

extraction and SoftMax classifier. Using left and right hippocampal regions from MRI, 

this model avoids overfitting and achieves an accuracy of 90.05%. [30] use a pre-trained 
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VGG16 model for feature extraction which uses a free surfer for preprocessing, selecting MRI 

slices using entropy, and classification using TL, named the mathematical model PFSECTL. 

The researchers achieve accuracy of 95.73%. [52] suggested a deep polynomial network that 

works well for small and large data sets. Using the Alzheimer’s disease neuroimaging initiative 

(ADNI) database, the binary and multiclassification model’s accuracy is 55.34%. [56] used 

a 3D ensemble model of CNN to present AD and MCI. Using a probability-based fusion 

strategy, 3D-DenseNets were optimized. Using the ADNI dataset, the model achieves 

classification accuracy of 97.52%. To learn AD characteristics, [21] suggested a 3D multiscale 

DL architecture. The system achieved a test accuracy of roughly 93.53% on subject-segregated 

random brain scan-partitioned dataset, with an average accuracy of 87.24%. In DL pipeline 

proposed by [48], the CNN model is trained using a large number of training images to perform 

feature categorization using scale- and shift-invariant methods. For MRI and functional 

magnetic resonance imaging (fMRI), the model achieves accuracy of 94.32% and 97.88%, 

respectively. 

 

DL models have been successfully used to analysis neuroimages from MRIs [33]. 

On the other hand, TL has gained popularity, which enables DL training to be effective in 

situations of insufficient data [29]. TL is suggested when compared with human behavior, 

can be applied to solve new, challenging situations. In this work, TL models – GoogleNet and 

residual networks (ResNet) were studied for the detection of AD. ResNet architecture offers 

several significant advantages, particularly in the training of very DNNs. One of its key 

strengths is the mitigation of the problem of vanishing gradients, which often hampers the 

training of deep networks [26]. By introducing skip connections, ResNet allows gradients to 

flow more effectively during backpropagation, ensuring that the network can learn even when 

it becomes very deep. This design also addresses the degradation problem, where adding more 

layers might otherwise lead to worse performance, by ensuring that additional layers contribute 

positively or at least do no harm. Consequently, ResNet enables the training of deeper networks, 

such as ResNet18, ResNet34, ResNet50, and ResNet101, which are capable of learning 

complex feature hierarchies, resulting in improved accuracy on tasks like image classification, 

object detection, and segmentation. Moreover, the architecture simplifies the optimization 

process, leading to smoother and more reliable training, and is known for its flexibility and 

generalization across different tasks and domains [49]. ResNet’s success on benchmark datasets 

like ImageNet has made it a popular choice for TL, where pre-trained ResNet models serve as 

powerful starting points for fine tuning on specific tasks with smaller datasets.  

Overall, ResNet’s ability to overcome common DL challenges, achieve high accuracy, 

and adapt to various applications makes it a highly effective and versatile architecture in the 

field of computer vision [27, 60]. The capability of ResNet has been comprehensively studied 

in this work for the detection of AD. A description and analysis are presented below. 

 

Materials and methods 

Database description 
This study dealt with AD identification used data from ADNI database [61] – the private-public 

partnership in USA and Canada introduced in 2004. The primary aim of ADNI dataset has been 

image analysis, including MRI, PET, and various clinical, neuropsychological, and biological 

markers. In this work, MRIs from this database have been used for the detection of AD. 

 

Proposed methodology 
The methodology is represented graphically in Fig. 2. 
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Fig. 2 Alzheimer’s disease detection flow diagram 

 

Pre-processing 

The pre-processing was done to the images before their application to the CNN network. 

All images were resized in a manner that accommodates to the input size of the respective CNN. 

We created “augmented image database” from these resized images. The image augmentation 

techniques used in this work are rotation, reflection, translation, scaling, and shearing. 

Example with original image and the augmented images are shown in Fig. 3. 

 

 

 

Fig. 3 Augmented images of Alzheimer’s dataset 
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Convolutional neural network 

CNNs are currently widely used for applications in AI, medical image processing, and image 

classification [29, 31]. CNN offers better results for larger datasets. In this work, for the purpose 

of detecting AD, we employed ResNet and GoogleNet. The fundamental architecture of CNN 

consists of several key components: convolutional layers, pooling layers, and fully connected 

layers. Each component plays a specific role in extracting features, reducing dimensionality, 

and making predictions. 

 

Convolutional layers are composed of a rectangular grid of neurons. A rectangular grid of 

neurons must also exist in the layer above. Each neuron in this layer gets input from a layer 

above it, and all of the neurons in this layer have the same section weights. Since the weights 

determine a convolutional filter, this layer is just a convolution of the output of the layer before. 

The convolutional layer applies a set of filters (or kernels) to the input image or feature map. 

The output of the convolution operation is a feature map: 

𝐹𝑖,𝑗
𝑘 = ∑ ∑ 𝐼𝑖+𝑚−1,𝑗+𝑛−1.𝑁

𝑛=1
𝑀
𝑚=1 𝑘𝑚,𝑛

𝑘 + 𝑏𝑘, (1) 

where 𝐹𝑖,𝑗
𝑘   is the resulting feature map after applying the k-th filter; 𝐼𝑖+𝑚−1,𝑗+𝑛−1 is the input 

image or feature map, i and j are the spatial dimensions of the output feature map; 

𝑘𝑚,𝑛
𝑘  is the k-th filter with dimensions m×n; and 𝑏𝑘 is the bias term for the k-th filter. 

 

After that, the convolutional layer’s non-linearity is used. Next, the non-linearity of the 

convolutional layer is employed: 

𝐴𝑖,𝑗
𝑘 = 𝑅𝑒𝐿𝑈(𝐹𝑖,𝑗

𝑘 ) = max (0, 𝐹𝑖,𝑗
𝑘 ), (2) 

where 𝐴𝑖,𝑗
𝑘  is the activation after applying the rectified linear unit (ReLU) function on the feature 

map.  

 

The ReLU is responsible for introducing these non-linarites. In comparison to other functions, 

this ReLU function performs well. The feature map which is produced by the convolutional 

layer and the ReLU function, maps the input data. After the convolutional layer, the data are 

processed in the pooling layer. 

 

Pooling layers reduce the number of parameters when the images are too large. Spatial pooling, 

sometimes referred to as “down-sampling”, reduces the dimensionality of each map while 

retaining essential data. There are three basic types of pooling layers. The maximum pooling 

layers are straight-forward and use the highest value for the ReLU mapped element. 

The average pooling layer takes the average of its input values. The sum-pooling layer is the 

total of all elements on the map. This work uses average pooling layer. 

𝑃𝑖,𝑗
𝑘 =

1

𝑚𝑥𝑛
∑ ∑ 𝐴𝑖+𝑝,𝑗+𝑞

𝑛−1
𝑞=1

𝑚−1
𝑝=0 , (3) 

where 𝑃𝑖,𝑗
𝑘  is the pooled feature map, over a window of size m×n in the feature map A. 

 

Fully connected layer converts the input from the convolutional and pooling layers from the 

preceding layers into vectors. The detection of AD is done by using the sigmoid during binary 

and SoftMax activation function for multiclass classification. The CNN first must be trained 

using training parameters before it can classify the processed data. We used the adaptive 

moment estimation (Adam) optimizer [1] because it updates CNN network weights based on 
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the training data. Adam optimizer is an extension of the stochastic gradient descent optimization 

method which gained popularity due to its adaptive learning rate and the ability to handle sparse 

gradients and noisy problems [1]. The involved steps are formulated as follows: 

Step 1. Initialization: Initialize the parameters 𝜃𝜃, 𝑚0, and 𝑣0. 

Step 2. Update biased first moment estimate: This computes a running average of the gradients, 

which is biased toward the initial values of the gradients. 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (4) 

Step 3. Update biased second-moment estimate: This computes a running average of the squared 

gradients. 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (5) 

Step 4. Compute bias-corrected first moment estimate: This step corrects the bias introduced by 

initializing 𝑚0 = 0. 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 (6) 

Step 5. Compute bias-corrected second moment estimate: This step corrects the bias introduced 

by initializing 𝑣0 = 0. 

𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡 (7) 

Step 6. Update parameters: This is the actual update rule for the parameters, where 𝛼 is the 

learning rate, and 𝜀 is a small number to prevent division by zero. 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝑚̂𝑡

√𝑣̂𝑡+𝜀
 (8) 

Adam adapts the learning rate for each parameter individually based on the estimates of the 

first and second moments, leading to better performance on problems with sparse  

gradients [47]. Adam is invariant to rescaling of the gradient, making it robust to different types 

of data and model structures. After training Adam CNN, testing and classification of MRI have 

to be done. For classification, we used five CNN networks: GoogleNet, ResNet18, ResNet34, 

ResNet50, and ResNet101. ResNet is a type of DNN architecture that has been shown to give 

good results in a wide range of computer vision tasks, such as image classification, 

object detection, and semantic segmentation [26]. 

 
Residual networks 

In ResNet the issue of vanishing gradients in DNNs is addressed by [26]. When a network’s 

depth increases, it becomes more challenging to train because the gradients may get incredibly 

small, making it more challenging to update the network’s weights during backpropagation. 

The skip connection, known as a shortcut link, introduced by ResNet, enables the gradient to 

flow straight from older layers to subsequent layers. This allows ResNet to train much deeper 

networks which can result in better accuracy than other architectures [26]. A building block for 

residual based learning with skip connection is shown in Fig. 4. 
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Fig. 4 Skip connections in ResNet 

 
ResNet also has the benefit of learning more intricate and complex feature representations by 

stacking multiple residual blocks. The skip connection enables the network to learn residual 

features which capture the difference between the input and output of the block [49]. 

Each residual block is made up of two or more convolutional layers. When performing tasks, 

like image classification, where fine-grained distinctions are crucial, this help network to learn 

more precise and nuanced representations of the input data. ResNet is highly effective in 

classification tasks due to several key innovations that address challenges faced by DNNs, 

especially the degradation problem [27, 60]. 

 

As the depth of a neural network increases, it becomes difficult to train due to issues like 

vanishing gradients and degradation of performance. ResNet introduces residual blocks which 

allow the network to learn residuals (the difference between the desired output and the actual 

output of a block). This is done by adding a shortcut or skip connection that bypasses one or 

more layers. This helps the network focus on learning the residual mapping rather than the full 

transformation, making it easier to optimize.  

 

The skip connections allow gradients to flow directly through the network, bypassing 

intermediate layers. This mitigates the vanishing gradient problem, enabling the effective 

training of very deep networks. Instead of learning a complicated transformation, the network 

learns simpler residuals which are more efficient. The skip connections ensure that at the very 

least, the network can copy the input if the deeper layers do not learn anything useful which 

avoids performance degradation. 

 

ResNet enables the construction of extremely deep networks (e.g. ResNet18, ResNet34, 

ResNet50, ResNet101) while maintaining or improving performance. Deep networks can 

capture more complex patterns and features contributing to better classification results.  

The architectural design of ResNet with its residual blocks helps prevent overfitting even when 

trained on large datasets. The residual connections act as regularizes, ensuring the network 

generalizes well to unseen data. 

 

Results  
A variety of metrics can be used to assess classification. The following performance metrics 

are the most frequently employed for classification problems: sensitivity (Se), specificity (Sp), 

positive predictive rate (PPR), accuracy (Acc), F1 score (F1), balanced accuracy (BAcc), 

Fowlkes-Mallows index (FMI), and Youden’s J statistic (J-Stat). These are collectively referred 

to as a system’s performance metrics and are used in this study. Mathematically, Sp and Se 

show how accurately a test can detect the existence or absence of a condition. Instances of AD 

detection are regarded as “positive” while normal conditions are regarded as “negative”. 

PPR stands for the percentage of positive outcomes from diagnostic tests and statistics that are 

actually genuine positives. The accuracy of a set of measurements refers to the degree to which 

they match the true value. The accuracy of a test is measured by the F1. Confusion matrices are 

measured using FMI, an external evaluation technique. A dichotomous diagnostic test’s 
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performance is summarized by the J-Stat statistic. All their performance metrics are evaluated 

as follows: 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
; (9) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
; (10) 

𝑃𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
; (11) 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
; (12) 

𝐹1 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
; (13) 

𝐵𝐴𝑐𝑐 =
𝑆𝑒+𝑆𝑝

2
; (14) 

𝐹𝑀𝐼 = √𝑆𝑒 × 𝑃𝑃𝑅; (15) 

𝐽 𝑠𝑡𝑎𝑡 = 𝑆𝑒 + 𝑆𝑝 − 1; (16) 

where true positive (TP) is the number of positive predictions made when positive labels are 

actually present; false positive (FP) is the number of positive predictions made when negative 

labels are actually present; true negative (TN) is the number of negative predictions made when 

negative labels are actually present; false negative (FN) is the number of negative predictions 

made when positive labels are actually present. 

 

For comparison, we used the GoogleNet and ResNet models of DNNs. When compared to 

GoogleNet model, it was shown that the ResNet model performs incredibly well. Four different 

variants of ResNet architectures (ResNet18, ResNet34, ResNet50, and ResNet101) were 

compared. The results are presented in Table 1. GoogleNet achieved Acc of 96.32%, 

Se of 95.73%, and Sp of 96.88%. ResNet18, ResNet34, ResNet50, ResNet101 gave Acc of 

97.28%, 98.25%, 98.41%, and 98.57%, respectively. ResNet101 has given Se, Sp, PPR, Acc, 

F1, BAcc, FMI, and J-Stat of 98.05%, 99.06%, 99.00%, 98.57%, 98.52%, 98.55%, 98.52%, 

and 97.11%, respectively. 

 

Table 1. Comparative results for ResNet and GoogleNet model 

Model Se Sp PPR Acc F1 BAcc FMI J-Stat 

GoogleNet 0.9573 0.9688 0.9666 0.9632 0.9619 0.963 0.9619 0.9260 

ResNet18 0.9606 0.9844 0.9831 0.9728 0.9717 0.9725 0.9718 0.9450 

ResNet34 0.9771 0.9875 0.9866 0.9825 0.9819 0.9823 0.9819 0.9646 

ResNet50 0.9788 0.9891 0.9883 0.9841 0.9835 0.9839 0.9835 0.9679 

ResNet101 0.9805 0.9906 0.9900 0.9857 0.9852 0.9855 0.9852 0.9711 

 
The receiver operating characteristic (ROC) curve is a graph that shows how well classification 

model performs at each level of classification. Two parameters are represented in this curve: 

the false positive rate (FPR) and the true positive rate (TPR). TPR vs. FPR are plotted on ROC 

curve at various categorization criteria. More items are classified as positive when the 

classification threshold is lowered which raises the number of both false positives and true 
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positives. The ROC curve of ResNet101 model is shown in Fig. 5. For algorithms that learn 

(optimize their internal parameters) gradually over time, like DL neural networks, learning 

curves are frequently employed in machine learning. There are three typical observations that 

can be made in learning curves: over fit, under fit, and good fit. A learning plot of under fit 

model has the following characteristics: regardless of training, the training loss is constant; until 

the training is over, the training loss keeps getting smaller. 

 

 

Fig. 5 ROC curve for ResNet101 

 

A learning plot of over fit model has the following characteristics: with learning, the plot of 

training loss keeps declining; a point is reached where the validation loss plot starts to increase 

once more. 

 

A learning plot of a good fit model has the following characteristics: the training loss plot 

declines until it reaches a stable position; the training loss and validation loss are closely 

separated on the plot of validation loss as it decreases to a stable point. 

 

The learning plot of the proposed model is a good fit as it satisfies the criterion of good fit in 

machine learning. Comparing only the metrics discussed in Eqs. (9)-(16) is not fair because 

different CNN models have different levels of complexity (number of layers), and their 

accuracy and computation time is dependent on that. GoogleNet is the quickest because it has 

22 layers, whereas ResNet101 is a CNN with 101 layers, so it took more time. 

 

Discussion  
In this study, a method for correctly identifying dementia using brain MRI is provided. 

The extraction of features use the segmentation based fractal texture analysis (SFTA) method. 

The binary images produced by the two threshold binary decomposition technique once the 

image has been broken down are used to extract fractal dimensions and texture properties. 

The classification of dementia is carried out using neural networks. With a classification 

accuracy of 97.50%, this technique has been successfully tested using 3D brain MRI from the 

OASIS dataset.  

 

[6] proposed a neural network based method. [20] offered a deep belief network (DBN) based 

classification strategy for AD based on structural modalities and has strength in terms of 

prediction models. Support vector machines (SVM) have been contrasted with DBN in 

classification models. The outcome demonstrates that this strategy performs SVM and the 

present method in the earlier investigation. The Acc, Se, and Sp of the DBN are 91.76%, 

90.59%, and 92.96%, respectively. In order to minimize the dimensionality of extracted features 

from MRI, a novel feature abstraction method using a sparse autoencoder is proposed in [9, 10]. 
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Then, in order to assess the prediction accuracy (PCA) of a linear discriminant analysis (LDA) 

and a logistic regression classifier, these features and those derived via the well-known 

PCA approach are utilized to train the respective classifiers. The experimental results 

demonstrate that the proposed approach produces a classification accuracy that is 8.00% greater 

than that of the PCA. For the long-term examination of structural MRI in AD diagnosis, [16] 

provide classification framework based on a combination of convolutional and recurrent neural 

networks (RNN). In order to learn the spatial properties of MRI for the classification task, 

CNN are first built. In order to extract the longitudinal features for AD classification, RNN with 

cascading three bidirectional gated recurrent units (BGRU) layers are then built on the CNN 

outputs at various time points. According to experimental findings, the suggested technique 

obtains classification accuracy of 91.33%. To provide a quantitative index of pattern matching 

for the prediction of the transition from MCI to AD, a novel data mining framework was 

designed and combined with three different classifiers, including SVM, Bayes statistics, 

and voting feature intervals [43]. By using feature selection methods, the brain regions with the 

highest accuracy for differentiating between AD and MCI were found, with accuracy of 

92.00%. Multifold Bayesian kernelization (MBK) is a novel diagnosis approach that suggest 

models for diagnosis process as a synthesis analysis of multi-modal biomarkers [36]. 

Each biomarker is given a kernel using MBK that maximizes the local neighborhood affinity, 

and each biomarker’s contribution is then assessed using a Bayesian framework. By combining 

the output diagnosis probabilities of several biomarkers, MBK implements a novel diagnosis 

scheme that might determine the subject’s diagnosis. [41] proposed a technique based on the 

lattice computing (LC) scheme for AD detection using MRI data. A kernel nearest neighbors 

(k-NN) classifier in the LC context pursues computer assisted diagnostics by approaching this 

task from two separate angles. In order to classify the subjects inside the lattice space, 

it first conducts dimensionality reduction over the high dimensional feature vectors. In order to 

diagnose and predict MCI and AD, a unique framework that integrates the two conceptually 

dissimilar techniques of sparse regression and DL is put [54]. To be more precise, at first train 

numerous sparse regression models with a different value for a regularization control parameter. 

[17] uses unique texture and other related variables taken from structural MRI to propose 

a multiclass DL classification of AD. Using data augmentation for 3D MRI views from the 

OASIS dataset, [3] used TL based approach. While employing a single MRI, the suggested 

model’s accuracy is 98.41%, and when using 3D views, accuracy is 95.11%. From structural 

MRI to diffusion tensor imaging, [2] suggest a method of cross-modal TL. To train on mean 

diffusivity data, models that have already been trained on a structural MRI dataset with domain-

dependent data augmentation are used as the initialization of the network parameters. 

The technique reduces the over fitting phenomenon, enhances learning efficiency, and hence 

boost prediction accuracy. The canonical representation of brain areas is made possible by the 

method [22], which use statistical learning and a feature space made up of projection based 

shape descriptors. The structures most severely impacted by the disease are automatically 

identified. A novel multi-domain transfers learning architecture is proposed for the combined 

learning of tasks in several auxiliary domains and the target domain [15]. [38] proposed the use 

of 3D MRI for AD stages classification and detection using TL. The ability to diagnose AD 

through the fusion of multimodal neuroimaging data has been demonstrated using techniques 

like PET and MRI [52]. A deep 3D CNN that can learn generic features capturing 

AD biomarkers and distinguish between Alzheimer’s brain and a normal healthy brain based 

on brain MRI has been proposed to predict AD [42]. [40] examine how DL architectures can 

be used to build classification methods that are applied to the parts of the brain identified by the 

automated anatomical labeling (AAL). The AAL atlas areas have been used to divide grey 

matter pictures from each brain region into 3D patches, and these patches are used to train 

various deep belief networks. Based on MRI and PET, a comprehensive DL system may be 
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used to determine the various stages of AD progression. By eliminating weight coadaptation, 

a common source of overfitting in DL, [34] used the dropout strategy to enhance traditional 

DL. Additionally, [34] added a multitask learning technique, an adjustable learning factor, and 

stability selection to the DL framework. [37] suggest a unique DL framework that uses 

a multimodal and multiscale DNN to distinguish between people with AD. This approach has 

an accuracy of 82.40% for detecting people with MCI. 

 

As presented in Table 2, the proposed model outperforms the existing state-of-the-art method 

based on ML or DL.  

 

Table 2. Comparison of the proposed model with existing methods for AD detection 
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Ref. № Method 
Imaging 

technique 

Accuracy, 

[%] 

[6] Feedforward neural network MRI 97.50 

[20] DBN MRI 91.70 

[9, 10] CNN + logistic regression MRI 74.93 

[16] RNN MRI 89.70 

[23] CNN MRI 96.00 

[28] 
Partial least squares  

regression + k-NN 
SPECT images 88.00 

[43] Data mining + SVM MRI 90.00 

[36] Multifold bayesian MRI 84.74 

[41] LC + k-NN MRI 80.00 

[59] CNN MRI 92.06 

[54] 
Deep ensemble sparse  

regression network 
MRI 90.28 

[17] Stacked auto-encoder + DNN MRI 56.00 
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[3] TL MRI 98.41 

[2] TL MRI 92.50 

[58] TL MRI 90.60 

[22] TL MRI 83.50 

[18] TL MRI 83.00 

[15] TL MRI 94.70 

[38] TL MRI 92.85 

[52] 
Multi-modal stacked deep  

polynomial networks + SVM 
MRI, PET 97.13 

[42] Sparse autoencoder + 3D CNN MRI 95.39 

[40] AAL + SVM MRI, PET 90.00 

[57] 2D CNN MRI 97.65 

[34] 
Stacked robust deep model  

(RBM) + SVM 

MRI, PET, 

CSF 
91.40 

[24] Sparse autoencoder + CNN MRI 94.74 

[37] Multimodal and multiscale DNN MRI, PET 84.60 

[54] 
Sparse regression models + 2D 

CNN MRI 91.02 

Proposed 

method TL MRI 98.57 
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The proposed method has performed better compared with ML based models [6, 28, 36, 41, 

43]. DL models have an advantage over ML models which do not require feature engineering. 

The proposed method has performed significantly better compared to DL based models [9, 10, 

16, 17, 20, 23, 37, 42, 57, 59]. The proposed method also performs better compared with models 

based on DL in their feature extraction stage and ML in the classification stage [28, 40, 41, 43, 

52]. The proposed method performed admirably better compared to TL methods [2, 3, 15, 18, 

22, 38, 58]. Improved accuracy in this method could help in more reliable detection of AD. 

 

Conclusions 
This paper presents a technique to detect AD using TL models. GoogleNet and ResNet models 

have been studied. ResNet performed significantly better in all parameters (Se, Sp, PPR, Acc, 

F1, BAcc, FMI, and J-Stat) studied in this work. Four different variants of ResNet were studied, 

and ResNet101 performed the best among them. This study also presents a computational 

analysis of these models in terms of execution time. It was observed that GoogleNet was the 

fastest among the studied models, and ResNet101 took the longest time to execute but achieved 

the highest accuracy. Analysis of the learning curve showed that the selected model was a good 

fit. MRI from the ADMI database were used in this work for the training and validation of the 

proposed models. Compared to the existing state-of-the-art methods, the proposed technique 

has admirable performance, so it can be a reliable approach for Alzheimer’s disease detection. 
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