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Abstract: Prostate cancer (PCa) remains a significant global health concern, with accurate 

Gleason grade assessment crucial for guiding treatment. Traditional histopathology relies on 

invasive biopsy and subjective evaluation. This study proposes a novel non-invasive approach 

for Gleason grade prediction using magnetic resonance imaging (MRI) and deep learning 

(DL). Our method comprises three main steps: tumor region segmentation using Fuzzy 

c-means (FCM); relevant feature extraction via modified residual network (ResNet50) model; 

and Gleason grade classification using a convolutional neural network (CNN). 

Through extensive experimentation, the proposed CNN model achieved an accuracy of 

92.00%, sensitivity of 92.00%, specificity of 92.00%, and an area under the curve receiver 

operating characteristic (AUC-ROC) of 0.95. These robust results highlight the potential of 

our DL framework to accurately differentiate between low-grade and high-grade PCa, 

thereby automating aspects of the diagnostic process, reducing reliance on subjective 

interpretation, and ultimately improving patient outcomes and treatment decisions. 

 

Keywords: MRI, Prostate cancer, Non-invasive Gleason grade, Image segmentation, 

Convolutional neural network classification, Feature extraction. 

 

Introduction 
Prostate cancer (PCa) remains a significant global health concern, with accurate Gleason grade 

assessment [15] being paramount for determining tumor aggressiveness and guiding treatment. 

Traditional biopsy methods though effective are invasive. Recent advancements in medical 

imaging, particularly magnetic resonance imaging (MRI) [16], have opened new avenues for 

non-invasive diagnosis. Radiomic analysis further enhances this by extracting quantitative 

features from medical images, offering a promising approach to characterize tumors 

non-invasively. This study proposes a novel deep learning (DL) based framework that 

integrates advanced image processing with robust classification techniques to predict 

PCa Gleason grade directly from MRI scans. 

 

Our approach systematically employs Fuzzy c-means (FCM) segmentation to accurately 

delineate tumor regions within MRI photos. Subsequently, a pre-trained residual network 

(ResNet) model ResNet50 is utilized for the extraction of highly relevant radiomic features 

from these segmented regions. These features are designed to capture intricate patterns and 

textures within the tumor tissue that are often subtle or difficult to discern through conventional 

visual inspection. Finally, a convolutional neural network (CNN) is trained on these extracted 

features to robustly classify Gleason grades. By leveraging the synergistic power of CNNs and 

comprehensive radiomic features derived from MRI, this study aims to improve significantly 
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the accuracy and reliability of PCa Gleason grade prediction. This enhanced, non-invasive 

classification capability can directly contribute to more precise personalized treatment planning 

and improved patient prognosis. 

 

Several studies have explored the use of radiomic features extracted from MRI images to 

differentiate between benign and malignant prostate lesions. For instance, several studies [3, 7, 

8] have demonstrated the potential of radiomic features in distinguishing between benign and 

malignant prostate lesions, as well as predicting disease aggressiveness. A recent study [1] 

investigated the impact of vendor variability on the performance of machine learning models 

for PCa detection. They found that while multimodal feature fusion can improve performance 

on a specific vendor (Siemens), it may not be as effective on different vendors (Philips). 

This highlights the importance of careful feature selection and model training to ensure 

robustness across different imaging platforms. Another recent study [5] explored the potential 

of radiomic models to improve the performance of radiologists in assessing PCa risk. 

By extracting radiomic features from MRI images and incorporating them into machine 

learning model, the researchers were able to improve the accuracy of prostate imaging reporting 

and data system (PI-RADS) scores. This suggests that radiomics can provide valuable 

information that complements traditional radiological assessment. Our approach aims to 

address these limitations by leveraging a robust segmentation method to extract informative 

features from MRI images ques and incorporating these features into a powerful CNN 

classification model. We aim to improve the accuracy and clinical utility of PCa diagnosis. 

 

Materials and methods 

Datasets 
The data utilized in this study were sourced from the project “Identifying the morphologic basis 

for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: 

preliminary findings”, generously provided by Center for computational imaging and 

personalized diagnostics (CCIPD), Case Western Reserve University, Cleveland, Ohio, USA 

[12]. The dataset [12] is publicly accessible and organized into two subfolders, each containing 

data from a different participating institution. Within each folder is given complete feature 

information computed on a region-wise basis, in CSV format: 

 PathFeats: histomorphometric features (total of 1024 cases); 

 PathFeatNames: descriptions of each histomorphometric feature; 

 RadFeats: radiomic features (total of 2379 cases); 

 RadFeatNames: description of each radiomic feature; 

 GleasonScores: Gleason score for each region; 

 PatientID: anonymized Patient ID associated with each region. 

 

One PatientID could be associated with multiple regions, and thus: 

 Dataset 1: 23 patients and 65 regions; 

 Dataset 2: 13 patients and 40 regions. 

 

 

Methods 

The objective of the study was to utilize these radiomic features from the regions of interest 

(ROI) to train CNN models and evaluate the performance in distinguishing significant PCa 

(Gleason score 3 + 4 or higher) from other cases. This study aims to develop a non-invasive 

method for predicting PCa aggressiveness using MRI scans and DL techniques. The proposed 

approach involves: 
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 Image segmentation: identifying specific ROI within the prostate using FCM clustering; 

 Feature extraction: extracting relevant features from the segmented regions using 

ResNet50 DL model; 

 Feature selection: selecting the most informative features to enhance predictive accuracy; 

 DL classification: employing DL algorithms to classify Gleason grades based on 

the extracted features and evaluate CNN performance in distinguishing significant PCa 

(Gleason score 3 + 4 or higher) from other cases. 

 

By leveraging these techniques, the study aims to improve the accuracy and efficiency of 

PCa diagnosis, leading to better patient outcomes and treatment decisions. 

 

Fuzzy c-means and regions of interest segmentation 

FCM is a clustering algorithm widely used for image segmentation, particularly effective in 

handling overlapping or ambiguous regions [4]. It allows pixels to have partial membership in 

multiple clusters, making it ideal for medical imaging applications such as prostate MRI. 

 

The FCM process begins by initializing cluster centers, followed by calculating the membership 

values of each pixel for each cluster using a fuzzy membership function. These cluster centers 

are then updated iteratively until convergence is reached with stable membership values 

and centers. After convergence, the pixels are assigned to the clusters with the highest 

membership values completing the segmentation process. 

 

Mathematical formulation: 

We used following algorithms [13] for the objective function: 

𝐽(𝑈, 𝑉) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1
𝑐
𝑖=1 ||𝑥𝑗 − 𝑣𝑖||2, (1) 

where: 

𝑈 – the membership matrix; 

𝑉 – the cluster centers; 

𝑐 – the number of clusters; 

𝑛 – the total number of pixels in the image; 

𝑢𝑖𝑗 – the degree of membership of pixel j in cluster i;  

𝑚 – the fuzziness exponent which controls the degree of fuzziness in the clustering; 

𝑥𝑗 – the intensity value of the j-th pixel; 

𝑣𝑖 – the center of the i-th cluster. 

 

A higher value increases overlap between clusters, typically set to Eq. 2 where for all j-th pixel 

each pixel belongs to one cluster: 

∑ 𝑢𝑖𝑗
𝑐
𝑖 = 1; ∀𝑗 ∈ 1, … , 𝑛 (2) 

0 ≤  𝑢ᵢⱼ ≤  1, (3) 

where for all i-th pixel and j-th pixel membership degrees are between 0 and 1. 

 

Membership updates where k is the key variable. 

𝑢ᵢⱼ =
1

∑  (
  ||𝑥𝑗−𝑣𝑖||2

 ||𝑥𝑗−𝑣𝑘||2
)

1
𝑚−1

𝑐
𝑘=1

 (4) 



 INT. J. BIOAUTOMATION, 2025, 29(3), 217-230 doi: 10.7546/ijba.2025.29.3.001043 
 

220 

Cluster center updates. 

𝑣𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

 (5) 

Explanation of the variables 

The variable m controls the “fuzziness” of the clustering. In our implementation, m = 2, 

as it provides a good balance between fuzzy and crisp segmentation. 

 

The variable 𝑈 is the membership matrix, and each element 𝑢𝑖𝑗 represents how strongly pixel j 

belongs to cluster i. Higher values of 𝑢𝑖𝑗 indicate stronger membership. 

 

The variable 𝑉 is the cluster centers and represent the average intensity of each segmented 

region (e.g., PZ, TZ, CZ, background). 

 

FCM minimizes an objective function (Eq. 1) that represents the weighted sum of squared 

distances between pixels and their corresponding cluster centers. This optimization is subject 

to constraints (Eq. 2) that ensure each pixel’s membership degree sums to one and is between 

0 and 1 (Eq. 3). The membership values and cluster centers are iteratively updated using 

Eq. 4. Then the cluster center updated Eq. 5. 

 

This methodology involves using FCM clustering to segment ROI within the prostate from MRI 

scans. The proposed method is illustrated in Fig. 1. 

 

 

 

Fig. 1 The ROI segmentation methodology 

 

 

The prostate region is initially isolated from the original MRI image using a pre-trained 

U-Net model (a convolutional neural network architecture). To further refine the segmentation, 

a modified 3D-2D U-Net architecture, proposed by [9], is employed. This hybrid 

3D-2D approach leverages the strengths of both 3D and 2D convolutional operations. 

3D convolutions are used to capture spatial relationships within 3D MRI volume, 

while 2D convolutions are used to reconstruct 2D segmentation mask. This combined approach 

improves the accuracy and precision of the segmentation process. 

 

In our method, 2D mask was initially applied to the input MRI image to isolate the prostate 

gland and remove the background. The isolated prostate image is segmented into three distinct 

regions using FCM clustering, based on intensity and texture features. Fig. 2 shows the result 

of 2D U-Net prostate gland isolation. The use of FCM clustering results in three distinct classes, 

with each pixel assigned a membership value indicating its degree of belonging to each cluster, 

as shown in Fig. 3. 
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a) MRI prostate (original image) b) prostate gland isolation 

Fig. 2 Prostate gland isolation 

 

  
a) Cluster 1 b) Cluster 2 

 
 

Cluster 1 

c) Cluster 3 d) FCM segmentation (3 clusters) 

Fig. 3 FCM segmentation and cluster membership 

 

Next, we performed ROI detection by applying morphological operations, including erosion, 

dilation, opening, and closing, to the cluster membership data. These operations played a crucial 

role in enhancing the segmentation and identifying potential ROI based on their shape, size, 

and intensity. Although this simulation routine can produce accurate segmentation results in 

areas with a high probability of cancerous lesions, it is important to recognize that it may have 

limitations in other regions. The segmentation of the prostate region of interest in the 

MRI image is depicted in Fig. 4. 
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Fig. 4 ROI lesion segmentation 

 

Radiomic feature extraction in ROI 

Radiomics is a quantitative analysis method that extracts valuable features from medical 

images, enabling insights into lesion characteristics for various clinical applications including 

lesion classification and patient outcome prediction [10]. 

 

In the MRI prostate, a comprehensive set of radiomic features that include texture, shape, 

and intensity can be extracted from identified ROI, as illustrated in Fig. 5. These features assist 

in classifying lesions as benign or malignant, potentially enhancing diagnostic accuracy and 

reducing the need for invasive biopsies [11]. 

 

Feature extraction is crucial for analyzing prostate MRI images, distinguishing between 

semantic features based on human interpretation and agnostic features extracted through 

quantitative analysis. Both types provide valuable information, and their combination offers 

a comprehensive representation of the ROI. 

 

 

Fig. 5 ROI radiomics features 

 

Transfer learning is a powerful technique in DL that involves leveraging knowledge gained 

from one task to improve performance on a related task by utilizing pre-trained models like 

ResNet50 – 50 layer deep CNN architecture [14]. ResNet50 processes input ROI images, 

typically 256×256 pixels. It extracts meaningful features through a series of convolutional 

layers, leveraging residual blocks to learn complex patterns. Pooling layers then sample the 

feature maps to reduce computational cost. Finally, a fully connected layer maps the extracted 

features to specific classes, as shown in Fig. 6. 
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Fig. 6 ResNet50 features extraction 

 

ResNet50 effectively addresses the vanishing gradient problem, leading to improved 

performance in image classification tasks and has been successfully applied to various computer 

vision tasks, including object detection, image segmentation, and classification in this study, 

we employ a fine-tuned ResNet50 model to extract robust and discriminative features from ROI 

within prostate MRI scans, which contribute to accurate Gleason grade prediction. 

 
CNN classification 

This study aims to leverage the power of CNN [6] to classify PCa into high or low Gleason 

grade based on radiomic features extracted from MRI images. The CNN architecture comprised 

input, convolutional, pooling, fully connected, and output layers. The input layer received the 

reshaped radiomic features. Convolutional layers extracted local features from the input data 

using filters. Pooling layers reduced dimensionality to prevent overfitting. Fully connected 

layers combined the extracted features and mapped them to the output layer, which used 

a softmax function to predict the probability of the input belonging to each Gleason grade class, 

as shown in Fig. 7. 

 

 

Fig. 7 CNN architecture 

 

The dataset was split into training and testing sets. Data augmentation [2] techniques were 

applied to increase data diversity. The model was trained using the cross-entropy loss function 

and the Adam optimization algorithm. The dataset was split into 50% for training and 50% for 

testing. The trained CNN was evaluated on the testing set using metrics such as accuracy, 

sensitivity, specificity, and AUC-ROC to assess its performance in classifying PCa  

Gleason grade. This non-invasive method improves patient comfort, streamlines diagnosis, 

and enables personalized treatment plans. Future research aims to enhance the model’s 

reliability and clinical applicability. 

 

Results 
The proposed methodology for predicting Gleason grade from MRI scans of the prostate yielded 

promising results, demonstrating the effectiveness of integrating FCM segmentation, ResNet50 

radiomics feature extraction and DL classification. 
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Fuzzy c-means segmentation results 
The FCM segmentation successfully delineated the prostate region from the surrounding tissues 

in the MRI images. Visual assessments and quantitative metrics indicated a segmentation 

accuracy of approximately 92%, comparable to manual segmentation by a radiologist. 

The segmented images showed clear boundaries, facilitating accurate ROI selection for further 

analysis. 

 

Feature extraction 
A modified ResNet50 model was utilized to extract a comprehensive set of 512 radiomic 

features from the segmented prostate images. These features, encompassing texture, shape, 

and intensity metrics, were designed to capture the complex patterns associated with varying 

Gleason grades. Feature importance analysis revealed a significant correlation between specific 

texture features, such as entropy and contrast, and the Gleason score. 

 

Fig. 8 presents a comprehensive bar graph illustrating the absolute correlation coefficients 

between various radiomic features and the Gleason grade group. The features are sorted by their 

absolute correlation, clearly showing which radiomic variables exhibit the strongest 

relationships with the target variable. 

 

 

Fig. 8 Correlation of radiomic variables with the target variable (Gleason grade group) 

 

 

Fig. 9 specifically highlights the top 10 radiomic features with the highest Pearson correlation 

coefficients with the Gleason score. This provides a focused illustration of the most important 

features in our analysis, directly supporting the claims about feature importance.  
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Fig. 9 Correlation of top 10 radiomic features with Gleason score 

 

CNN classification 
The CNN model demonstrated strong performance in classifying PCa into high and low 

Gleason grades, achieving an accuracy of 92.00%, sensitivity of 92.00%, specificity of 92.00%, 

and an AUC-ROC of 0.95. These results suggest the potential for improved clinical decision-

making and patient outcomes.  

 

Based on the provided training progress graph, as shown in Fig. 10, the CNN model achieved 

a validation accuracy of 92.00% after 30 epochs. The model’s loss decreases steadily during 

training, indicating that the model is learning effectively. 

 

 

Fig. 10 Training performance: green line represents the training accuracy; purple line 

represents the validation accuracy; blue line represents the training loss; 

black line represents the validation loss 
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Overall, the model appears to have converged well, with a good balance between training and 

validation performance. The high validation accuracy suggests that the model is likely to 

generalize well to unseen data. The confusion matrix for our classification results on the 50 test 

cases is explicitly shown in Fig. 11. The numerical representation is as follows in Table 1: 

 True positives (TP): correctly predicted high Gleason grades (23 cases); 

 True negatives (TN): correctly predicted low Gleason grades (23 cases); 

 False positives (FP): incorrectly predicted high Gleason grades when they were low 

(2 cases); 

 False negatives (FN): incorrectly predicted low Gleason grades when they were high 

(2 cases). 

 

 

Fig. 11 Confusion matrix (GGG is Gleason grade group) 

 

 

Table 1. Confusion matrix 

Actual\Predicted GGG < 7 GGG > 7 Total 

GGG < 7 23 TN 2 FP 25 

GGG > 7 2 FN 23 TP 25 

Total 25 25 50 

 

 

Based on this correct confusion matrix, the accurate performance metrics are as follow: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
=  

(23 + 23)

50
= 92.00% (6) 

 

For Gleason grade group < 7 (Class 1): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
= 92.00% (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
= 92.00% (8) 
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The F1 score is a harmonic mean of precision and recall, providing a single metric that balances 

the both. It is particularly useful when the class distribution is uneven.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 92.00% (9) 

 

For Gleason grade group > 7 (Class 2): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
= 92.00% (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
= 92.00% (11) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 92.00% (12) 

 

AUC-ROC 

Furthermore, Fig. 12 visually represents the ROC, clearly indicating an AUC of 0.95, 

confirming the excellent discriminative power of our model. 

 

 

Fig. 12 ROC curve 

 

Discussion 

This study demonstrates the effectiveness of integrating FCM segmentation, ResNet50 

radiomics feature extraction, and DL classification for non-invasive Gleason grade prediction 

in PCa. The CNN model achieved high accuracy, indicating its ability to accurately assess tumor 

aggressiveness using MRI data, thus potentially reducing the need for invasive biopsies. 

This non-invasive method could improve clinical decision-making by allowing clinicians to 

assess tumor characteristics from MRI data alone, aligning with personalized medicine trends 

and reducing patient discomfort and biopsy risks. 

 

Based on the validated evaluation metrics, this proposed CNN model warrants careful 

evaluation within specific clinical contexts, considering factors such as the prevalence of 

different Gleason grades, the desired level of sensitivity and specificity, and the need for 

model interpretability. 
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Results presented in Table 2 are very strong, indicating that the CNN model performs 

exceptionally well for this classification task. F1 score of 0.92 and a recall of 0.92 signify an 

excellent balance between precision and recall, demonstrating the model's robustness in 

identifying both positive and negative cases. 

 

Table 2. Model performance 

Model Accuracy Sensitivity Specificity AUC-ROC 

CNN model 92.00% 92.00% 92.00% 0.95 

 

The proposed CNN model demonstrates strong and balanced performance in predicting prostate 

Gleason grade based on radiomics features extracted from MRI images: 

 Accuracy: the model correctly classifies 92.00% of the samples; 

 Sensitivity: the model correctly identifies 92.00% of true positive cases (correctly 

identifies patients with high-grade PCa); 

 Specificity: the model correctly identifies 92.00% of true negative cases (correctly 

identifies patients without high-grade PCa); 

 AUC-ROC: the AUC-ROC is 0.95 indicating excellent discriminative power. 

 

These results suggest that the CNN model has significant potential to be a valuable tool for 

clinical decision-making in PCa diagnosis and treatment planning, supporting non-invasive 

assessment. 

 

As shown in Table 3, our proposed CNN model outperforms other state-of-the-art models in 

terms of AUC-ROC, indicating superior predictive performance. This highlights its strong 

ability to distinguish between positive and negative cases. 

 

Table 3. Model Performance Comparison 

Model AUC-ROC 

Our Work (CNN) 0.95 

[3] 0.7772 

[8] 0.88 

 

The strong and balanced performance of the CNN model holds significant potential for 

improving clinical outcomes in PCa. The model’s ability to accurately identify high-grade 

cancers (high sensitivity) can lead to earlier detection and timely intervention. By providing 

reliable predictions, the CNN model can assist clinicians in making informed decisions about 

treatment options. Furthermore, the model’s high specificity can help minimize unnecessary 

biopsies and treatments for benign cases. 

 

However, it’s important to acknowledge that direct comparisons with other studies can be 

limited due to variations in datasets, problem domains, and evaluation metrics. While the CNN 

performed well, it is essential to acknowledge limitations related to dataset size and diversity. 

The performance metrics could vary across different populations or imaging techniques, 

so further validation with a larger, more heterogeneous dataset from multiple centers is 

recommended. Additionally, while the model demonstrates high performance, exploring 

explainable artificial intelligence (AI) methods can help identify the most influential features 

contributing to predictions, which may provide clinicians with greater confidence in the model’s 

outputs and foster trust in the automated diagnostic process. 
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Conclusion 
This study proposed a novel approach integrating FCM segmentation and ResNet50 transfer 

learning for accurate non-invasive Gleason grade prediction in PCa. Our CNN model, trained 

on a comprehensive dataset of MRI images, achieved robust and balanced performance with an 

accuracy of 92.00%, sensitivity of 92.00%, specificity of 92.00%, and an AUC-ROC of 0.95. 

These results indicate a strong potential for our non-invasive method to improve patient 

comfort, streamline diagnosis, and enable more personalized treatment plans. Future research 

will focus on enhancing the model’s reliability and clinical applicability through further 

validation with larger and more diverse patient populations, exploring advanced DL 

architectures, and integrating explainable AI methods to foster greater clinical trust and 

facilitate seamless integration into clinical workflows, ultimately aiming to unlock the full 

potential of AI-powered solutions in improving the early detection and treatment of PCa. 
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