Physiological Cross-sectional Areas of Upper Limb Muscles | ||||||||||||||||
Muscle | PCSA [cm2] / Information Source | Mean | Deviation | |||||||||||||
DEL | 25.9 | 12 | 25.66 | 14 | 24.66 | 5 | 21.9 | 10 | 18.17 | 2 | 23.26 | 2.58 | ||||
DEL p.cl. | 8.1 | 5 | 4.5 | 10 | 6.30 | 1.80 | ||||||||||
DEL p.sp. | 3.9 | 10 | 3.90 | 0.00 | ||||||||||||
DEL p.acr. | 13.5 | 10 | 13.50 | 0.00 | ||||||||||||
BIC | 6.66 | 14 | 6.24 | 5 | 5.34 | 13 | 4.6 | 1 | 4.6 | 10 | 4.21 | 2 | 5.28 | 0.81 | ||
BIC c.ln. | 3.21 | 12 | 3.12 | 5 | 2.89 | 14 | 2.78 | 13 | 2.5 | 1 | 2.5 | 10 | 2.01 | 2 | 2.72 | 0.32 |
BIC c.br. | 3.77 | 14 | 3.12 | 5 | 3.08 | 12 | 2.56 | 13 | 2.11 | 2 | 2.1 | 1 | 2.1 | 10 | 2.69 | 0.54 |
COR | 3.18 | 5 | 2.83 | 14 | 2.51 | 12 | 2.1 | 13 | 1.6 | 2 | 2.44 | 0.48 | ||||
SUPR | 5.72 | 2 | 5.21 | 12 | 4.9 | 14 | 4.68 | 5 | 5.13 | 0.34 | ||||||
TRI | 18.8 | 1 | 18.8 | 10 | 14.8 | 11 | 13.81 | 13 | 7.29 | 14 | 14.70 | 3.32 | ||||
TRI c.ln. | 6.84 | 12 | 6.7 | 1 | 6.7 | 10 | 6.24 | 5 | 4.73 | 13 | 4.3 | 11 | 3.96 | 2 | 5.64 | 1.12 |
TRI c.lt. | 10.5 | 11 | 6 | 1 | 6 | 10 | 3.83 | 13 | 6.58 | 1.96 | ||||||
TRI c.md. | 6.1 | 1 | 6.1 | 10 | 5.25 | 13 | 5.82 | 0.38 | ||||||||
TMJ | 12.54 | 5 | 10.44 | 14 | 10.02 | 12 | 8.77 | 2 | 5.8 | 10 | 9.51 | 1.78 | ||||
SUB | 16.3 | 2 | 15 | 5 | 13.51 | 12 | 13.16 | 14 | 14.49 | 1.16 | ||||||
TMI | 3.12 | 5 | 2.92 | 12 | 2.26 | 14 | 2.77 | 0.34 | ||||||||
INF | 9.51 | 12 | 9.45 | 14 | 8.16 | 5 | 9.04 | 0.59 | ||||||||
INF p.pr. | ||||||||||||||||
INF p.ds. | ||||||||||||||||
INF p.md | ||||||||||||||||
BRA | 7 | 1 | 7 | 10 | 5.55 | 13 | 5.4 | 1 | 6.24 | 0.76 | ||||||
BRD | 2.87 | 13 | 1.5 | 1 | 1.5 | 10 | 1.33 | 7 | 1.33 | 8 | 1.2 | 11 | 1.62 | 0.42 | ||
PRO | 6.6 | 4 | 4.13 | 7 | 4.13 | 8 | 3.4 | 1 | 3.4 | 10 | 2.8 | 11 | 1.65 | 13 | 3.73 | 1.05 |
PRO c.hr. | ||||||||||||||||
PRO c.ul. | ||||||||||||||||
ECRL | 5 | 3 | 4 | 4 | 2.4 | 1 | 1.5 | 11 | 1.46 | 9 | 2.87 | 1.30 | ||||
ECRB | 7.81 | 3 | 4.9 | 4 | 2.9 | 1 | 2.73 | 7 | 2.73 | 9 | 2.7 | 6 | 3.96 | 1.60 | ||
FCR | 6.81 | 3 | 5.2 | 4 | 1.99 | 7 | 1.99 | 9 | 2 | 1 | 3.60 | 1.93 | ||||
PLO | 0.9 | 1 | 0.69 | 7 | 0.69 | 8 | 0.76 | 0.09 | ||||||||
FCU | 10 | 4 | 8.42 | 3 | 3.42 | 9 | 3.2 | 1 | 6.26 | 2.95 | ||||||
FCU c.hm. | ||||||||||||||||
FCU c.ul. | ||||||||||||||||
ANC | 2.5 | 1 | 2.5 | 10 | 1.24 | 13 | 2.08 | 0.56 | ||||||||
FDP | 16.65 | 3 | 7.92 | 7 | 12.29 | 4.37 | ||||||||||
EDM | 1.81 | 3 | 1.81 | 0.00 | ||||||||||||
EPL | 1.98 | 3 | 1.9 | 4 | 0.98 | 7 | 0.98 | 8 | 1.46 | 0.48 | ||||||
EIN | 1.78 | 3 | 1.78 | 0.00 | ||||||||||||
FPL | 5.1 | 4 | 4.17 | 3 | 2.08 | 7 | 2.08 | 8 | 3.36 | 1.28 | ||||||
APL | 4.49 | 3 | 3.9 | 4 | 2.62 | 7 | 3.67 | 0.70 | ||||||||
EPB | 1.43 | 3 | 1.3 | 4 | 1.29 | 7 | 1.34 | 0.06 | ||||||||
FDS | 6.25 | 7 | 6.1 | 1 | 6.18 | 0.08 | ||||||||||
FDS c.hm. | ||||||||||||||||
FDS c.rd. | ||||||||||||||||
ECU | 6.44 | 3 | 3.5 | 4 | 3.4 | 1 | 3.4 | 1 | 2.6 | 6 | 2.6 | 7 | 2.6 | 9 | 3.51 | 0.84 |
PRQ | 3.5 | 4 | 2.86 | 13 | 2.07 | 7 | 2.07 | 8 | 2.63 | 0.56 | ||||||
EDI | 5.9 | 3 | 3.8 | 1 | 4.85 | 1.05 | ||||||||||
SUP | 7.3 | 4 | 3.4 | 1 | 3.4 | 7 | 4.70 | 1.73 | ||||||||
Note that the cited data are obtained using different techniques, the cadaver specimens has different characteristics, so before using these values see for details the original sources | ||||||||||||||||
Information Sources | |
1 | An, K. N., Hui, F. C., Morrey, B. F., Linscheid, R. L., Chao, E. Y. (1981) Muscles across the elbow joint: A biomechanical analysis. Journal of Biomechanics, 14, 659-669. |
2 | Bassett R.W., Browne A.O., Morrey B.F., An, K.N. (1990) Glenohumeral muscle force and moment mechanics in a position of shoulder instability. Journal of Biomechanics, 23, 405-415 (note: the mean value for left and right hand an different techniques) |
3 | Cutts, A., Alexander, R.McN., Ker, R.F. (1991) Ratios of cross-sectional areas of muscles and their tendons in a healthy human forearm. Journal Anatomy, 176, 133-137. |
4 | Freund, J., Takala, E-P. (2001) A dynamic model of the forearm including fatigue. Journal of Bionechanics, 34, 597-605. |
5 | Happe, R., Van der Helm, F.C.T. (1995) The control of shoulder muscles during goal directed movements, an inverse dynamic analysis. Journal of Biomechanics, 28, 1179-1191. |
6 | Herman, A.M., Delp, S.L.. (1999) Moment arm and force-generating capacity of the extensor carpi ulnaris after transfer to the extensor carpi radialis brevis. The Journal of Hand surgery, 24A, 1083-1090. |
7 | Lemay, M.A., Crago, P.E. (1996) A dynamic model for simulating movements of the elbow, forearm, and wrist. Journal of Biomechanics, 29, 1319-1330. |
8 | Lieber, R.L., Jacobson, M.D., Fazeli, B M., Abrams R.A., Botte M.J. (1992) Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer. The Journal of Hand Surgery, 17, 787-798. |
9 | Lieber R.L., Fazeli B.M., Botte M.J. (1990) Architecture of selected wrist flexor and extensor muscles. The Journal of Hand Surgery, 15A, 244-250. |
10 | Nijhof, E-J. , Kouwenhoven.(2000) Simulation of multijoint arm movements. In: J.M. Winters and P.E. Crago (eds.) Biomechanics and neural control of posture and movement, pp.363-372. New York: Springer-Verlag. |
11 | Murray W.M., Buchanan, T.S., Delp, S.L. (2000) The isometric functional capacity of muscles that cross the elbow, Journal of Biomechanics, 33, 943-952. |
12 | Veeger, H.E., van der Helm, F.C.T., van der Woude, L.H.V., Pronk G.M., Rozendal, R.H. (1991) Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism. Journal of Biomechanics, 24, 615-629. |
13 | H.E.J. Veeger,Vrije Universiteit Amsterdam, Institute for Fundamental and Clinical Human Movement Sciences and F.C.T. van der Helm Delft University of Technology, Laboratory for Measurement and Control http://www.fbw.vu.nl/research/Lijn_A4/shoulder/overview.htm http://www.fbw.vu.nl/research/Lijn_A4/shoulder/Mayo_study_PCSA_k4r.html (note only the data for left hand are reproduced) |
14 | H.E.J. Veeger: http://www.fbw.vu.nl/research/Lijn_A4/shoulder/VUstudy_inertia.htm (note only one column from original table is reproduced where the PCSA is calculated by dividing the volume to the length) |