Архив | Бивши служители | Проф. Диана Стефанова | Цитирания

Начало | Биография | Проекти | Публикации | Цитирания

ЦИТИРАНИЯ НА ПРЕДСТАВЕНИТЕ НАУЧНИ ПУБЛИКАЦИИ

(2) Burgudjiev ., Lyochkova M, Stefanova DI, Koleva I. (1976): Use of characteristic of modern photographic materials in spectral determination of trace elements.  Mikrochim Acta., 1:441-449

[1]. 1. Barnes RM. (1978): Emission -spectroscopy. Anal. Chem. 50:100-120 (IF=5.450)

[2]. 2. Zimmer K, Heltai G. (1979): Influence of photographic and photometric effects on spectrographic evaluation. 1. Problems in the evaluation of emission-spectra-effect of the micro-densitometer type on the results of density-measurements. Acta Chim Acad Sci Hung 100:319-339

[3]. 3. Zimmer K, Heltai G. (1979): Effect of photographic and photometric effects on the evaluation in spectrography. Magy. Kem. Foly 85:170-180

(3) Stephanova DI, Dimitrov GV. (1982): Mathematical modeling of ionic processes in human skeletal muscle fibers. Electromyogr. Clin. Neurophysiol., 22:329-347

[4]. 1. Kleinpenning P, A. van Oosterom (1990): On the relation between axonal resistance and conductivity in linear cable models. Mathematical Biosciences. 99:1-10

[5]. 2. Kleinpenning PH., Gootzen T., van Oosterom A, Stegeman A. (1990): The equivalent source description representing the extinction of an action potential at a muscle fibre ending. Mathematical Biosciences. 101(1):41-61 (IF=1.699)

[6-8]. 3-5. Kleinpenning P. (1991): The electrical potential field of single nerve cell: A model study. Den Haag, Ph.D. Thesis, Chapter II, 7-15 ; Chapter III, 17-33; Chapter IV, 34-55, Nijmegen, Proefschrift, the Nederlands

[9]. 6. Gydikov A. (1992): Biophysics of the skeletal muscle extracellular potentials. Kluwer Academic Publishers, Dordrecht/Boston/London and Publishing House of the Bulgarian Academy of Sciences, Sofia

[10]. 7. Dimitrova N. (2005): Biophysical bases of the electrophysiological valuation of the functional condition of the neuro-muscular system. DSc Thesis, Sofia, Bulgaria

[11]. 8. Тарасов  (2003): Имитационное моделирование состояние рефлекторной дуги человека – лекция към Факултет электроники и приборостроение. Катедра электрогидроакустической и медицинской техники, Таганский государственный радиотехнический университет; www2.fer.tsure.ru/win/egamt/learn/model/PZ_1.pdf

[12]. 9. Fortune E, Lowery MM. (2007): The effect of extracellular potassium concentration on muscle fibre conduction velocity examined using model simulation. Engineering in Medicine and Biology Society (EMBS), 29th Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, art. No 4352892, pp. 2726-2729.

[13]. 10. Fortune E, Lowery MM. (2009): Effect of extracellular potassium accumulation on muscle fiber conduction velocity: A simulation study. Annals of Biomedical engineering 37(10):2105-2117

[14]. 11. Fortune E, Lowery MM. (2011): Simulation of the interactions between muscle fibre conduction velocity and instantaneous firing rate. Annals of Biomedical Enginneering 39(1):96-109

[15]. 12. Fortune E, Lowery MM. (2012): Effect of membrane properties on skeletal muscle fiber excitability: a sensitivity analysis. Med. Bio. Eng. Comput., 50(6):617-629.

ISSN: 0140-0118

(4) Стефанова Д. (1983): Математично моделиране на процесите протичащи в клетъчните мембрани на скелетни мускулни влакна. Кандидатска дисертация

[16]. 1. Gydikov A. (1992): Biophysics of the skeletal muscle extracellular potentials. Kluwer Academic Publishers, Dordrecht/Boston/London and Publishing House of the Bulgarian Academy of Sciences, Sofia

(5) Stephanova DI, Dimitrov GV. (1983): Mathematical analysis of the mechanisms of conductance along excitable fibres in the recovery cycle. Electromyogr. Clin. Neurophysiol., 23:35-47

[17]. 1. Dimitrova N. (1987): Mathematical modelling of intra and extracellular potentials generated by active structures: Effects of a step change in structure diameter, Gen. Physiol. Biophys., 6(1):19-34   (IF=0.736)

[18]. 2. Латева З.Х. (1990): Интегрални и спектрални характеристики на извънкле-тъчните потенциали на възбудими влакна, Кандидатска дисертация, София

[19]. 3. Gydikov A. (1992): Biophysics of the skeletal muscle extracellular potentials. Kluwer Academic Publishers, Dordrecht/Boston/London and Publishing House of the Bulgarian Academy of Sciences, Sofia

(6) Stephanova DI, Dimitrov GV. (1984): Mathematical analysis of the changes in the intracellular potentials, generated by human skeletal muscle fiber under the effect of temperature. Electromyogr. Clin. Neurophysiol., 24:377-386

[20]. 1. Tackmann W., Vogel P. (1987): Dependence of the muscle-potential duration on the intramuscular temperature (Zur Abhangigkeit der Muskelaktion- spotentialdauer von der intramuskularen temperature). Z. EEG-EMG 18:72-75

[21]. 2. Латева ЗХ. (1990): Интегрални и спектрални характеристики на извънкле-тъчните потенциали на възбудими влакна. Кандидатска дисертация, София

[22]. 3. Kleinpenning P, Gootzen T, van Oosterom A, Stegeman A. (1990): The equivalent source description representing the extinction of an action potential at a muscle fibre ending. Mathematical Biosciences. 101:41-61 (IF=1.699)

[23]. 4. Kleinpenning P. (1991): The electrical potential field of single nerve cell: A model study. Den Haag, PhD Thesis, Chapter IV, 34-55

[24]. 5. Gydikov A. (1992): Biophysics of the skeletal muscle extracellular potentials. Kluwer Academic Publishers, Dordrecht/Boston/London and Publishing House of the Bulgarian Academy of Sciences, Sofia

(7) Stephanova DI. (1984): Mathematical analysis of the changes in the action potentials, generated by a frog skeletal muscle fibre under the effect of temperature. Electromyogr. Clin. Neurophysiol., 24:369-376

[25]. 1. Gydikov A. (1992): Biophysics of the skeletal muscle extracellular potentials. Kluwer Academic Publishers, Dordrecht/Boston/London and Publishing House of the Bulgarian Academy of Sciences, Sofia

(8) Stephanova DI. (1984): Mathematical analysis of the changes in the intracellular potentials, generated by a human skeletal muscle fiber in the recovery cycle at the different temperatures. Electromyogr Clin Neurophysiol, 24:107-115

[26]. 1. Dimitrov G., Lateva Z., Dimitrova N.(1988): Effects of changes in asymmetry, duration and propagation velocity of the intracellular potential on the power spectrum of extracellular potentials produced by an excitable fiber. Electromyogr. Clin. Neurophysiol., 28:93-100

[27]. 2. Gydikov A. (1992): Biophysics of the skeletal muscle extracellular potentials. Kluwer Academic Publishers, Dordrecht/Boston/London and Publishing House of the Bulgarian Academy of Sciences, Sofia

(9) Stephanova DI. (1984): Mathematical analysis of the changes in the action potential and ionic currents of the frog muscle fibres at different temperatures. Electromyogr. Clin. Neurophysiol., 24:599-610

[28]. 1. Gydikov A. (1992): Biophysics of the skeletal muscle extracellular potentials. Kluwer Academic Publishers, Dordrecht/Boston/London and Publishing House of the Bulgarian Academy of Sciences, Sofia

[29]. 2. Radicheva NI., Kolev VB., Peneva NE (1993): Influence of intracellular potential and conduction-velocity on extracellular muscle-fiber potential. Journal of Electromyography and Kinesiology, 3:95-102, (IF=2.102)

(10) Dimitrov DS, Stoicheva N, Stefanova. D (1984): A simple interpolation formula for the rate of approach of particles or cells with tension-controlled shapes at arbitrary separations. J Colloid Interf Sci., 98:269-271

[30]. 1.Hammer DA, Lauffenburger DA. (1987): A dynamical model for receptor-mediated cell-adhesion to surfaces. Biophys. J., 52:475-487 (IF=4.585)

[31]. 2. Ivanov IB (1988) Thin Liquid Films: Fundamentals and Applications CRC Press, Chapter 7, pp. 454,491.

[32]. 3. Hammer DA., Lauffenburger DA. (1989): A dynamical model for receptor-mediated cell-adhesion to surfaces in viscous shear-flow. Cell Biophys., 14:139-173

[33]. 4. André P, Bongrand P. (1990): Cell-cell contacts, Biophysics of the Cell Surface, Springer Series in Biophysics 5:287-321.

[34]. 5. Tissot O, Foas C, Capo C, Brailly H, Delaage M, Bongrand P. (1991): Influence of adhesive bonds and surface rugosity on the interaction between rat thymcytes and flat surfaces under laminar shear-flow. J. Dispersion Sci. Technol. 12:1445-160

[35]. 6. Tissot O, Pierres A, Foa C, Delaage M, Bongrand P. (1992): Motion of cells sedimenting on a solid-surface in a laminar shear-flow. Biophys. J, 61:204-215 (IF=4.585)

[36]. 7. Kumar S, Kumar R, Gandhi KS. (1993): A new model for coalescence efficiency of drops in stirred dispersions. Chem. Eng. Sci. 48:2025-2038 (IF=1.655)

[37]. 8. Basu S, Gandhi KS, Kumar R. (1997): Flow of liquid/liquid dispersions in a Hele-Shaw cell. J. Chem. Eng. JP. 30:852-866 (IF=0.515)

[38]. 9. Mohamed N, Rainier TR, Ross JM. (2000): Novel experimental study of receptor-mediated bacteria adhesion under the influence of fluid shear. Biotechnol. Bioeng. 68:628-636, (IF=2.216)

[39]. 10. Mascari L, Ymele-Leki P, Eggleton CD, Speziale P, Ross JM. (2003): Fluid shear contributions to bacteria cell detachment initiated by a monoclonal antibody. Biotechnol. Bioeng., 83:65-74  (IF=2.216)

(11) Stephanova D., Gydikov A. (1985): Mathematical modelling of the changes in the parameters of the action potential of frog muscle fibre at different temperatures. Electromyogr. Clin. Neurophysiol 25:223-232

[40]. 1. Basgoze Osman, Gokce Kutsal Yesim, Narman Sabri, (1987): Effects of ice on the amplitude of M wave in distal latency, Electromyogr. Clin. Neurophysiol, 26:729-734

[41]. 2. Syndulko K, Jafari, Woldanski A, Baumhefner RW, Tourtellotte W. (1996): Effects of temperature in multiple sclerosis: A review of the literature, Neurorehabilitation and Neural Repaier, 10:23-34

[42]. 3. Radicheva N, Mileva K, Vukova T, Georgieva B, Kristev I. (2002): Effect of microwave electromagnetic field on skeletal muscle fibre activity. Archives of Physiology and Biochemestry, 110(3): 203-214

(12) Stephanova DI. (1987): Mathematical analysis of the changes in the parameters of the action potentials, membrane and ionic currents of the frog muscle fibre during the recovery cycle. Biol. Cybern., 57:207-211

[43]. 1. Gydikov A. (1992): Biophysics of the skeletal muscle extracellular potentials. Kluwer Academic Publishers, Dordrecht/Boston/London and Publishing House of the Bulgarian Academy of Sciences, Sofia

[44]. 2. Pour-Ghaz I. (2002): Mechanical and Electrical Stimulation of the frog gastronemius skeletal muscle: Studying the response Pattern and Formation of fatigue. Frog Musle Response Pattern

(13) Stephanova DI. (1988): The effect of temperature on a simulated systematically paranodally demyelinated nerve fiber. Biol Cybern, 60:73-77

[45]. 1. Cianfrone G, Turchetta R, Mazzei F, Bartolo M, Parisi L. (2006): Temperature-dependent auditory neuropathy: Is it an acoustic Uhthoff-like phenomenon? A case report. Annals of Otology, Rhinology and Laryngology 115 (7):518-527

(14) Stephanova DI. (1988): Reorganization of the axonal membrane in a demyelinated nerve fibre: computer simulation. Electromyogr. Clin Neurophysiol., 28:101-105

[46]. 1. Brusa A, Jones SJ, Plant GT. (2001): Long-term remyelination after optic neuritis -A 2-year visual evoked potential and psychophysical serial study. Brain 124:468-479

[47]. 2. Christova LG, Alexandrov AS, Krampfl K, Bufler J, Kossev AR, Ishpekova BA. (2005): Electrophysiological Characteristics of Hereditary Motor and Sensory Neuropathy of the LOM Type (HMSN-L). Klin Neurophysiol 36:86-74

(15) Stephanova DI. (1988): Systematic paranodal demyelination of nerve fibers: computer simulations. Elecromyogr. Clin. Neurophysiol., 28:107-110

[48]. 1. Christova LG, Alexandrov AS, Krampfl K, Bufler J, Kossev AR, Ishpekova BA. (2005): Electrophysiological Characteristics of Hereditary Motor and Sensory Neuropathy of the LOM Type (HMSN-L). Klin Neurophysiol 36:86-74

(17) Stephanova D, Trayanova N, Gydikov A, Kossev A. (1989): Extracellular potentials of a single myelinated nerve fibre in an unbounded volume conductor. Biol Cybern., 61:205-210

[49]. 1. Schoonhoven R, Stegeman D. (1991): Models and Analysis of Compound Nerve Action Potentials. Critical Reviews in Biomedical Engineering. 19(1):47-111

[50-51]. 2-3. Benno Klass, van Veen (1992): Single fiber action potentials in inhomogeneously conducting skeletal muscle: Influence of inhomogeneities in muscle tissue upon single fiber action potentials a finite element model study. PhD Thesis, Chapter IV, 59-88; Chapter V, 91-114, Enschede, the Netherlands

[52]. 4. Rutten WC, van Veen BK, Stroeve SH, Boom HBK, Wallinga W. (1997): Influence of inhomogeneities in muscle tissue on single-fibre action potentials: a model study. Med & Biol Eng & Comput, 35:91-95

[53]. 5. Struijk JJ. (1997): The extracellular potential of a myelinated nerve fiber in an unbounded medium and in nerve cuff models. Biophys. J., 72:2457-2469   (IF=4.585)

[54]. 6. Meier JH, Rutten WLC, Boom HBK. (1998): Extracellular potentials from active myelinated fibres inside insulated and noninsulated peripheral nerve. IEEE Trans.  Biomed. Eng., 45(9):1146-1153   (IF=1.815)

[55]. 7. Holt GR. (1998): A critical reexamination of some assumption and implications of cable theory in neurobiology. PhD Thesis, Chapter II (19), California, Institute of Technology, Pasadena

[56]. 8. Kallesoe K. (1998): Implantable transducers for neurokinesiological research and neural prostheses. Ph.D.Thesis, Simon Fraser University, Canada (pp. 120, 194)

[57]. 9. Bennett MR, Farnell L, Gibson WG. (1999): Cable analysis of a motor-nerve terminal branch in a volume conductor. Bulletin of Math., Biol. 61 (1):1-17   (IF=1.485)

[58]. 10. Bennett MR, Farnell L, Gibson G, Macleod GT, Dickens P. (2000): Quantal potential fields around individual active zones of amphibian motor-nerve terminals. Biophysical J., 78 (3):1106-1118   (IF=4.585)

[59]. 11. Mizumori SJY, Leutgeb S. (2001): Directing place representation in the hippocampus. Reviews in the Neuroscience 12:347-363   (IF=3.240)

[60]. 12. Aronsson P, Liljeström H. (2001): Effects of non-synaptic neuronal interaction in cortex on synchronization and learning. BioSystems 63:43-56   (IF=1.016)

[61]. 13. Bennett MR. (2003): The formation and function of single transmitter release sites at mature amphibian motor-nerve terminals. J. Neurocytol. 32:447-472   (IF=1.669)

[62]. 14. Bennett MR. (2003): The formation and function of single transmitter release sites at mature amphibian motor-Nerve terminals. Brain Cell Biology 32:447-472

[63]. 15. Qiao S, Odoemene O, Yoshida K. (2012): Determination of electrode to nerve fibre distance and nerve conduction velocity through spectral analysis of the extracellular action potentials recorded from earthworm giant fibres. Med. Biol. Eng. Comp., 50(8):867-875

[64]. 16. Qiao S, Yoshida K. (2013): Influence of unit distance and conduction velocity on the spectra of extracellular action potentials recorded with intrafascicular electrodes. Medical Engineering & Physics., 35(1):116-124, IF=1.179

(18) Stephanova DI. (1989): Conduction along myelinated and demyelinated nerve fibers during the recovery cycle: model investigations. Biol. Cybern., 62:83-87

[65]. 1. Quandt FN and Davis FA. (1992): Action potential refractory period in axonal demyelination: a computer simulation. Biol. Cybern., 67:545-552   (IF=2.142)

[66]. 2. Reutskiy S, Rossoni E, Tirozzi B. (2003): Conduction in bundles of demyelinated nerve fibers: computer simulation. Biol. Cybern., 89:439-448   (IF=2.142)

[67]. 3. Christova LG, Alexandrov AS, Krampfl K, Bufler J, Kossev AR, Ishpekova BA. (2005): Electrophysiological Characteristics of Hereditary Motor and Sensory Neuropathy of the LOM Type (HMSN-L). Klin Neurophysiol 36:86-74

(19) Gydikov A, Kossev A, Trayanova N, Stephanova D. (1990): Electrotonic potentials of myelinated nerve fibres. Electromyogr. Clin. Neurophysiol., 30:47-51

[68]. 1. Benenett MR., Farnell L, Gibson WG. (1999): Cable analysis of a motor-nerve terminal branch in a volume conductor. Bulletin of Math. Biol. 61:1-17 (IF=1.485)

[69]. 2. Bennett MR. (2003): The formation and function of single transmitter release sites at mature amphibian motor-Nerve terminals. J. Neurocytol. 32:447-472   (IF=1.669)

[70]. 3. Bennett MR. (2003): The formation and function of single transmitter release sites at mature amphibian motor-Nerve terminals. Brain Cell Biology 32:447-472

(21) Stephanova DI. (1990): Conduction along myelinated and demyelinated nerve fibres with a reorganized axonal membrane during the recovery cycle: model investigations. Biol. Cybern., 64:129-134

[71]. 1. Christova LG, Alexandrov AS, Krampfl K, Bufler J, Kossev AR, Ishpekova BA. (2005): Electrophysiological Characteristics of Hereditary Motor and Sensory Neuropathy of the LOM Type (HMSN-L). Klin Neurophysiol 36:86-74   (IF=0.183)

[72]. 2. Cianfrone G, Turchetta R, Mazze F, Bartolo M, Parisi L. (2006): Temperature-dependent auditory neuropathy: Is it an acoustic Uhthoff-like phenomenon? A case report. Annals of Otology, Rhinology and Laryngology 115(7): 518-527

[73]. 3. Bucher D, Goaillard JM. (2011): Beyond faithful conduction: Short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Progress in Neurobiology, 94(4):307-346   IF= 11.33

[74]. 4. Nicolas G, Le Peillet ML, Rivron B. (2011): Managemen of patients in the Angers ALS Center. Annals of Physical and Rehabilitation Medicine, 54(1), pp.e173-e173

(22) Stephanova DI, Bostock H. (1995): A distributed-parameter model of the myelinated human nerve fibre: temporal and spatial distributions of action potentials and ionic currents. Biol. Cybern. 73:275-280

[75]. 1. Wegner B. (1996): Zentralblatt für Mathematik und ihre Grenzgebiete by Heidelberger Akademie der Wissenschaften. Akademie der Wissenschaften der DDR. Vol. 828, Page 574

[76]. 2. Wegner B. (1997): Zentralblatt für Mathematik und ihre Grenzgebiete by Heidelberger Akademie der Wissenschaften. Akademie der Wissenschaften der DDR. Vol. 850, Page 250

[77]. 3. McIntyre C, Grill W. (1998): Sensitive analysis of a model of mammalian neural membrane. Biol. Cybern., 79:29-37   (IF=2.142)

[78]. 4. Williamson R (1999): A new generation neural prosthesis. PhD Thesis. Edmonton, Alberta. Pp. 1-223 (pp. 22, 35)

[79]. 5. Richardson AG, McIntyre CC, Grill WM. (2000): Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath. Med Biol Eng Comput 38 (4): 438-446   (IF=1.070)

[80]. 6. Grill WM, Richardson AG, McIntyre CC. (2000): Influence of the myelin sheath on excitation properties of nerve fibres. Engineering in Medicine and Biology Society, Proceedings of the 22nd Annual International Conference of the IEEE, 22(1-4):1605-1607

[81]. 7. Dimitrov AG. (2000): The effect of a near-membrane volume on generation of action potentials in myelinated nerve fibres. Neurophysiology. 32(3):228-228   (IF=2.357)

[82]. 8. Jun Kimura (2001): Electrodiagnosis in diseases on nerve and muscle: principles and practice: Nerve Conduction Studies. Oxford, University Press, pp. 230, 236

[83]. 9. McIntyre CC, Richardson AG, Grill WM. (2002): Modeling the excitability of mammalian nerve fibres: Influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2):995-1006   (IF=3.592)

[84]. 10. Dimitrova N. (2005): Biophysical bases of the electrophysiological valuation of the functional condition of the neuro-muscular system. DSc Thesis, Sofia, Bulgaria

[85]. 11. Dimitrov AG (2005): Internodal sodium channels ensure active processes under myelin manifesting in depolarizing afterpotentials. J. Theor. Biol. 234(4):451-462

[86]. 12. Farzad Towhidkhah (2005): Modeling the effects of electric fields on nerve fibres: influence of the myelin sheath. Biomedical Engineering Faculty, Amirkabir University of Technology 1-37, Tehran, Iran

[87]. 13. Dimitrov AG. (2009): A possible mechanism of repetitive firing of myelinated axon. Pflügers Archiv European Journal of Physiology 458(3):547-561 (IF=3.842)

[88]. 14. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

[89]. 15. Goldfinger MD. (2009): Probability distributions of markovian sodium channel states during propagating axonal impulses with or without recovery supernormality. Journal of Integrative Neuroscience 8(2): 203-221

[90]. 16. Schiefer MA. (2009): Optimized design of neural interfaces for femoral nerve clinical neuroprostheses:anatomically-based modelling and intraoperative evaluation. PhD Thesis, Department of Biomedical Engineering, Case Western Reserve University, pp 49, 395

[91]. 17. Zlochiver S. (2010): Persistent reflection underlies ectopic activity in multiple sclerosis: a numerical study. Biol Cybern 102 (3):181-196

[92]. 18. Angel N. (2011): Equivalent circuit implementation of demyelinated human neuron in spice. PhD Thesis, California Polytechnic State University, San Luis Obispo, USA, 1-95

[93]. 19. Babbs CF, Shi R. (2013): Subtle paranodal injury slows impulse in a mathematical model of myelinated axons. PLoS one 8(7):e67767. doi:10.1371/journal.pone.0067767 –x.plos.org

[94]. 20. Dimitrov AG, Dimitrova NA. (2013): Chapter 3, Axonal Afterdischarges: Problems and Mechanisms. In: Axons: Cell Biology, Molecular Dynamics and Roles in Neural Repair and Rehabilitation, H. Yamamoto and A. Oshiro (eds.), Nova Science Publishers Inc., New York, pp.187-240, ISBN: 978-1-62948-051-0.

[95]. 21. Howells J. (2013): Biophysical determinants of the behaviour of human myelinated axons, PhD Thesis, The faculty of Medicine, The University of Sydney.

[96]. 22. Dimitrov AG, Dimitrova N. (2014): Internodal mechanism of pathological afterdischarges in myelinated axons. Muscle & Nerve, 49(1):47-55

[97]. 23. Dekker DMT., Briaire JJ., Frijns JHM. (2014): The impact of internodal segmentation in biophysical nerve fiber models. Journal of Computational Neuroscience, 37:307-315

[98]. 24. Volman V, Ng LJ. (2014): Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci, 37(3): 439-457

(23) Stephanova DI, Bostock H. (1996): A distributed-parameter model of the myelinated human nerve fibre: temporal and spatial distributions of electrotonic potentials and ionic currents. Biol. Cybern., 74: 543-547

[99]. 1. McIntyre C, Grill W. (1998): Sensitive analysis of a model of mammalian neural membrane, Biol. Cybern. 79(1):29-37   (IF=2.142)

[100]. 2. McIntyre C, Grill W. (1999): Excitation of central nervous system neurons by nonuniform electric fields. Biophysical. J. 76(2):878-888(IF=4.585)

[101]. 3. Jun Kimura (2001): Electrodiagnosis in diseases on nerve and muscle: principles and practice: Nerve Conduction Studies. Oxford, University Press, pp. 230, 236

[102]. 4. Farzad Towhidkhah (2005): Modeling the effects of electric fields on nerve fibres: influence of the myelin sheath. Biomedical Engineering Faculty, Amirkabir University of Technology 1-37, Tehran, Iran

[103]. 5. Zhang G, Huo X, Yin Z. (2007): A model study of nerve fibers. Beijing Biomedical Engineering 26(6):663-666

[104]. 6. Gow A, Devaux J. (2008): A model of tight junction function in central nervous system myelinated axons, Neuron Glia Biology. Department of Biomedical Engineering, Case Western Reserve University, 4(4):307-317

[105]. 7. Dimitrov AG. (2009): A possible mechanism of repetitive firing of myelinated axon. Pflügers Arch-Eur J Physiology 458:547-561 (IF=3.842)

[106]. 8. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

[107]. 9. Schiefer MA (2009): Optimized design of neural interfaces for femoral nerve clinical neuroprostheses:anatomically-based modelling and intraoperative evaluation, PhD Thesis

[108]. 10. Angel N. (2011): Equivalent circuit implementation of demyelinated human neuron in spice. PhD Thesis, California Polytechnic State University, San Luis Obispo, USA, 1-95

[109]. 11. Jun Kimura (2013): Chapter 10, Other Techniques to Assess the Peripheral Nerve. In: Electrodiagnosis in diseases of Nerve & Muscle, Jun Kimura (ed.), (fourth edition), Oxford, University Press, pp: 235-273,   ISBAN 978-0-19-973868-7.

[110]. 12. Dimitrov AG., Dimitrova NA. (2013): Chapter 3, Axonal Afterdischarges: Problems and Mechanisms. In: Axons: Cell Biology, Molecular Dynamics and Roles in Neural Repair and Rehabilitation, H. Yamamoto and A. Oshiro (eds.), Nova Science Publishers Inc., New York, pp.187-240, ISBN: 978-1-62948-051-0.

[111]. 13. Howells J. (2013): Biophysical determinants of the behaviour of human myelinated axons. PhD Thesis, The faculty of Medicine, The University of Sydney.

[112]. 14. Tani J, Chen C-I, Sung J-Y. (2014):  Nerve Excitability Changes in Chronic Inflammatory Demyelinating Polyneuropathy: A New Clinical Diagnostic Biomarker. Review Article, Journal of Experimental and Clinical Medicine, 49(1): 47-55, ISSN: 1097-4598.

(24) Stephanova DI and Chobanova M. (1997): Action potentials and ionic currents through paranodally demyelinated human motor nerve fibres: computer simulations. Biol Cybern, 76:311-314

[113]. 1. Crest M, Beraud-Juven E, Gola M (1999): Towards therapeutic applications of Kv1 channel blockers in neurological diseases. (Review), Perspectives in Drag Discovery and Design 15-16:333-342

[114]. 2. Smith KJ, McDonald WI. (1999): The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Review, (Philosophical Transaction of the Royal Society of London, Series B-Biological Sciences), Phi. T. Roy. B, 354:1649-1673 (IF=4.128)

[115]. 3. Smith KJ. (2002): Neurophysiology of inflammatory demyelinating disease, Part 8 In Brain Disease: Therapeutic Strategies and Repair, Abramsky O, Compston S, Miller A, Said G (Eds) pp. 97, 456, ISBN 1841840408.

[116]. 4. Smith KJ, McDonald WI. (2003): Mechanisms of Symptom Production in Multiple Sclerosis 2. Blue Books of Practical Neurology, Butterworth-Heinemann Medical, 27(C):59-74.

[117]. 5. McDonald WI, Noseworthy JH. (2003): in Multiple Sclerosis 2. Blue Books of Practical Neurology, McDonald WI, Noseworthy JH (eds), Butterworth-Heinemann Medical, V27, p. 68.

[118]. 6. Ichimura H, Shiga T, Abe I, Hara Y, Terui N, Tsujino A, Ochiai N. (2005): Distribution of sodium channels during nerve elongation in rat peripheral nerve. Journal of Orthopaedic Science, 10(2): 214-220

[119]. 7. Christova LG, Alexandrov AS, Krampfl K, Bufler J, Kossev AR, Ishpekova BA. (2005): Electrophysiological Characteristics of Hereditary Motor and Sensory Neuropathy of the LOM Type (HMSN-L). Klin Neurophysiol 36:86-74   (IF=0.183)

[120]. 8. Cianfrone, G., Turchetta, R., Mazzei, F., Bartolo, M., Parisi, L. (2006): Temperature-dependent auditory neuropathy: Is it an acoustic Uhthoff-like phenomenon? A case report. Annals of Otology, Rhinology and Laryngology 115 (7):518-527

[121]. 9. Compston A, McDonald I, Noseworthy J, Lassmann H, Miller D, Smith K, Wekerle H, Confavreux C. (2006) McALpine’s Multiple Sclerosis. In: University of Cambridge, Cambrige, UK, p. 982

[122]. 10. Smith K, McDonald I, Miller D, Lassmann H. (2006): Section 4, 13 The pathophysiology of Multiple Sclerosis. In: McAlpine’s Multiple Sclerosis, Churchill Livingstore, Elsevier Inc, p. 601-660

[123]. 11. Hayes KC. (2007): Fampridine-SR for multiple sclerosis and spinal cord injury. Expert review of neurotherapeutics, vol.7 (no5)

[124]. 12. Zheng MJ, Chan YS, Yu KW. (2011): Light propagation and oscillations in two-dimensional graded square photonic lattices. OPT COMMUN (Optical Communications), 284(13):3269-3275

[125]. 13. Babbs CF, Shi R. (2013): Subtle paranodal injury slows impulse in a mathematical model of myelinated axons. PLOS one 8(7):e67767, doi:10.1371/journal.pone.0067767 –x.plos.org

[126]. 14. Volman V, Ng LJ. (2014): Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury, J Comput Neurosci, 37(3):439-457

[127]. 15. García-Grajales J.A. Rucabado G, García-Dopico A, Peña J-M., Jérusalem A., (2015): Neurite, a Finite Difference Large Scale Parallel Program for the Simulation of Electrical Signal Propagation in Neurites under Mechanical Leading. PLOS one, DOI:10.1371/journal.pone.0116532, 1-22.

(26) Stephanova DI, Mileva K. (2000): Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations. Biol Cybern, 83:161-167

[128]. 1. Durand S, Fromy B, Humeau A, Sigaudo-Roussel D, Saumet JL, Abraham P. (2002): Break excitation alone does not explain the delay and amplitude of anodal current-induced vasodilatation in human skin. J.Physiol, 542(2):549-557 (IF=4.346)

[129]. 2. Gianni M, Liberti M, Apollonio F, GD’Inzeo G. (2006): Modeling electromagnetic fields detectability in a HH-like neuronal system: stochastic resonance and window behavior. Biol Cybern., 94(2):118-127   (IF=2.142)

[130]. 3. Dimitrov AG. (2009): A possible mechanism of repetitive firing of myelinated axon. Pflügers Arch-Eur J Physiology, 458(3):547-561 (IF=3.842)

[131]. 4. Dimitrov AG. (2009): Axonal Hyperactivity, Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

[132]. 5. Howells J, Trevilon L, Bostock H, Burke D. (2012): The voltage dependence of Ih in human myelinated axons. J Physiol (JP) 590(7):1625-1640

[133]. 6. Farrar MA. (2012): The pathophysiology of Spinal Muscular Atrophy. PhD Thesis, Faculty of Medicine, University of New South Wales,

[134]. 7. Farrar MA, Park SB, Lin CSY, Keirnan MC. (2013): Evolution of peripheral nerve function in human: novel insights from motor nerve excitability. J Physiol (JP), 591:273-286,   IF 4.881

[135]. 8. Howells J. (2013): Biophysical determinants of the behaviour of human myelinated axons. PhD Thesis, The faculty of Medicine, The University of Sydney.

[136]. 9. Volman V, Ng LJ. (2014): Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci, 37(3):439-457

(27) Stephanova DI. (2001): Myelin as longitudinal conductor: a multi-layered model of the myelinated human motor nerve fibre. Biol Cybern, 84:301-308

[137]. 1. Prayer D, Prayer L. (2003): Diffusion-weighted magnetic resonance imaging of cerebral white matter development. Eur J Radiol 45(3):235-24 (IF=1.745)

[138]. 2. Villapecellin-Cid MM, Roa L, Reina-Tosina J. (2003): Ranvier Nodes Impedance Match with Internodal Transmission Lines of Myelinated Axons. Annual International Conference of the IEEE Engineering in Medicine and Biology – Proceedings, 2:1905-1908 (IF=1.278)

[139]. 3. Pinheiro FR, Lima MT. (2004): Interpretações de papel da bainha de mielina na condução do potencial de ação. Curso de Ciências Moleculares. Universidade de São Paulo, 7 Novembro, 1-14.

[140]. 4. Hennings K. (2004): Selective electrical stimulation of peripheral nerve fibers: Accommodation bases methods. PhD Thesis, Denmark, 1-55.

[141]. 5. Dimitrov AG (2005): Internodal sodium channels ensure active processes under myelin manifesting in depolarizing afterpotentials. J. Theor. Biol. 234(4):451-462

[142]. 6. Hennings H, Arendt-Nielsen L, Andersen OK. (2005): Breakdown of accommodation in nerve: a possible role for persistent sodium current. Theoretical Biology and Medical Modelling, 2:16-27   (IF=1.683)

[143]. 7. Sweeney J. (2007): Marvelous Myelin. Neurophysiol (Neuro 430) (with Marcus Uiza) http://sleep25.vetmed.wsu.edu/KidsJudge2/PDF/2007/Paper_Sweeney.pdf

[144]. 8. Urza M, Sweeney J. (2007): Marvelous Myelin. (Neuro 430) Kids Judge Neuroscience Fair (Partner. J. Sweeney) Model writing assignment, http://sleep25.vetmed.wsu.edu/KidsJudge2/PDF/2007/Paper_Urza.pdf

[145]. 9. Zhang G-H, Huo X-L, Yin Z-G. (2007): A model study of nerve fibers. Beijing Biomedical Engineering, 26(6):663-666

[146]. 10. Bava S. (2007): Reduced microstructural white matter integrity in a genetic metabolic disorder:A diffusion tensor MRI study, PhD Thesis, pp. 1-102, University of California, San Diego, USA,

[147]. 11. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

(28) Daskalova M, Stephanova DI. (2001): Strength-duration properties of human myelinated motor and sensory axons in normal case and in amyotrophic lateral sclerosis. Acta Physiol & Pharmacol Bulgarica, 26:11-14

[148]. 1. Mendez MC, Cruz E, Caudillo C, Sosa M, Gamino S. (2003): Motor Nerve Conduction Velocity Depends on Stimuli Frequency in the Rat. Medical Physics, 682:238-242

[149]. 2. Dimitrova N. (2005): Biophysical bases of the electrophysiological valuation of the functional condition of the neuro-muscular system. DSc Thesis, Sofia, Bulgaria

[150]. 3. Krarup C (2006): Physiology and function, Chapter 2, In Peripheral Nerve Diseases, Kimura J (ed) Handbook of Clinical Neurophysiology, Daube JR, Mauguiиre E (Series eds), Elsevier Health Sciences, V(C), pp. 23-61

—(29) Stephanova DI, Daskalova M, Krustev I. (2001) Excitability changes during the recovery cycle of  human myelinated motor and sensory axons in normal case and in amyotrophic lateral sclerosis. Acta Physiol. Pharmavol. Bulg., 26:41-44

[151]. 1. Piotrkiewicz M, Hausmanowa-Petrusewicz I. (2013): Amyotrophic lateral sclerosis: a dying motor unit? Frontier in aging neuroscience, 5(7):1-4

(30) Stephanova DI, Daskalova M. (2002): Extracellular potentials of human motor myelinated nerve fibres in normal case and in amyotrophic lateral sclerosis. Electromyogr Clin. Neurophysiol., 42:443-448

[152]. 1. Parker JN, Parker PM. (2003): The official patient’s source book on Amyotrophic Lateral Sclerosis, p. 122, ICON Group International Inc, San Diego

(31) Stephanova DI, Daskalova M. (2003): Extracellular potentials of myelinated and demyelinated nerve fibres. Electromyogr Clin Neurophysiol, 43: 497-501

[153]. 1. Rosenbluth J. (1999): A brief history of myelinated fibers: one hundred and fifty years of controversy. Journal of Neurocytology, V28, no 4-5

[154]. 2. Christova LG, Alexandrov AS, Krampfl K, Bufler J, Kossev AR, Ishpekova BA. (2005): Electrophysiological Characteristics of Hereditary Motor and Sensory Neuropathy of the LOM Type (HMSN-L). Klin. Neurophysiol., 36:86-74

(35) Stephanova DI, Daskalova M. (2004): Excitability properties of normal and demyelinated human motor nerve axons. Electromyogr Clin Neurophysiol, 44: 147-152

[155]. 1. Dimitrova N. (2005): Biophysical bases of the electrophysiological valuation of the functional condition of the neuro-muscular system. DSc Thesis, Sofia, Bulgaria

[156]. 2. Zeng FG, Kong YY, Michalewski HJ, Starr A. (2005): Perceptual Consequences of Disrupted Auditory Nerve Activity. J Neurophysiol. 93(6): 3050-3063 (IF=3.592)

[157]. 3. Christova LG, Alexandrov AS, Krampfl K, Bufler J, Kossev AR, Ishpekova BA. (2005): Electrophysiological Characteristics of Hereditary Motor and Sensory Neuropathy of the LOM Type (HMSN-L). Klin Neurophysiol 36(2):68-74 (IF=0.183)

[158]. 4. Rance G, Aud D. (2005): Auditory neuropathy/dys – synchrony and its perceptual consequences. Trends in Amplification 9(1):1-43

[159]. 5. Nodera H, Kaji R. (2006): Nerve excitability testing and its clinical application to neuromuscular diseases. Clinical Neurophysiology 117 (9):1902-1916 (IF=2.538)

[160]. 6. Kaji R, Nodera H. (2008): Clinical Value and limitation of threshold tracking. In Programme and Proceedings of XVIth International SFEMG and QEMG Course and IXth Quantitative EMG Conference with the 23th Dr. Janez Faganel Memorial Lecture, Ljubljana, Slovenia,  IL09: 90-102

[161]. 7. Perrot X. (2008) Review, Central consequences of auditory neuropathy /auditory dyssynchrony: Psychoacoustic and cognitive perceptual perspectives | [Conséquences centrales de la neuropathie auditive/ désynchronisation auditive: Aspects psychoacoustiques et perceptivo-cognitifs]. Cahiers de l’Audition 21(2):6-26

[162]. 8. Vlastarakos PV, Nikolopoulos TP, Tavoulari E, Papacharalambous G, Korres S. (2008): Auditory neuropathey: Endocochlear lesion or temporal processing impairment? Implications for diagnosis and management. International Journal of Pediatric Otorhinolaryngology, 72(8):1135-1150

[163]. 9. Axons: Webster’s Facts and Phrases (2008), ICON Group International, Inc. (ed), pp. 144.

[164]. 10. Angel N. (2011): Equivalent circuit implementation of demyelinated human neuron in spice. PhD Thesis, California Polytechnic State University, San Luis Obispo, USA, 1-95

(36) Stephanova DI, Daskalova M, Alexandrov AS. (2005): Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part I. Clin Neurophysiol, 116: 1153-1158

[165]. 1. Dimitrova N. (2005): Biophysical bases of the electrophysiological valuation of the functional condition of the neuro-muscular system. DSc Thesis, Sofia, Bulgaria

[166]. 2. Vlastarakos PV, Nikolopoulos TP, Tavoulari E, Papacharalambous G, Korres S. (2008): Auditory neuropathey: Endocochlear lesion or temporal processing impairment? Implications for diagnosis and management. International Journal of Pediatric Otorhinolaryngology, 72(8):1135-1150

[167]. 3. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

[168]. 4. Smit JE. (2008): Modelled response of the electrically simulated human auditory nerve fibre. Chapter 8, General discussion and conclusions, PhD Thesis, Faculty of Engineering, University of Pretoria, p. 128. http://upetd.up.ac.za/thesis/submitted/etd-09182008-144232/unrestricted/08chapter8.pdf

[169]. 5. Smit JE, Hanekom T, Hanekom JJ. (2009): Modelled temperature-dependent excitability behavior of a generalized human peripheral sensory nerve fibre. Biol. Cybern., 101(2):115-130

[170]. 6. Luo ZH, Chen JX, Huang YM, Yang HQ, Lin JU-Q, Li HUI, Xie SHU-S. (2014): Characterization of signal conduction along demyelinated axons by action-potential-encoded second harmonic generation, Journal of Innovative Optic Health Sciences 7(1):1330003-9

[171]. 7. Volman V, Ng LJ. (2014): Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury, J Comput Neurosci, 37(3):439-457

(37) Stephanova DI, Daskalova M. (2005): Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part II. Paranodal demyelination. Clin Neurophysiol, 116:1159-1166

[172]. 1. Smith PM,  Jeffery ND. (2006): Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury. Brain Pathology, 16(2):99-109  (IF =3.95).

[173]. 2. Howe CL. (2008): Immunological aspects of axon injury in multiple sclerosis, In Advance in multiple sclerosis and experimental demyelinating diseases. Book Series: Current topics in microbiology and immunology, M. Rodriguez (ed.), 318: 93-131

[174]. 3. Rodriguez M. (ed.) (2008): Advance in multiple sclerosis and experimental demyelinating diseases. Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-73676-9

[175]. 4. Smit JE. (2008): Modelled response of the electrically simulated human auditory nerve fibre. Chapter 8, General discussion and conclusions, PhD Thesis, Faculty of Engineering, University of Pretoria, p. 128

[176]. 5. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

[177]. 6. Brazhe AR, Maksimov GV, Mosekide E, Sosnovtseva OV. (2011): Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance. Interface Focus 1(1): 86-100

[178]. 7. Brazhe AR. Maksimov GV. (2012):Chapter 7, Active-Related Structural Changes in the Myelinated Nerve Fibrer. In: Biosimulation in biomedical research, health care and drag development, Springer, 153-177

[179]. 8. Howells J, Czesnik D, Trevillion L, Burke D. (2013) Excitability and the safety margin in human axons during hyperthermia. J Physiol., 591:3063-3080

[180]. 9. Howells J. (2013): Biophysical determinants of the behaviour of human myelinated axons. PhD Thesis, The faculty of Medicine, The University of Sydney

[181]. 10. Volman V, Ng LJ. (2014): Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci, 37(3):439-457

[182]. 11. Sung JY, Tani J, Park SB, Kiernan MC, Lin CS. (2014): Early identification of ‘acute-onset’ chronic inflammatory demyelinating polyneuropathy. Brain, 137(8), 2155-2163, IF=10.226

(38) Stephanova DI, Daskalova M. (2005): Differences in potentials and excitability properties in simulated cases of demyelinating neuropathies. Part III. Paranodal internodal demyelination. Clin. Neurophysiol., 116:2334-2341

[183]. 1. Wininger M. (2006): The action potential assists devise. Nano- & Micro-Engineered Biointerfaces, Report 2, Nano-Micro Fabrication, 27 April, 1-11.

[184]. 2. Smit JE. (2008): Modelled response of the electrically simulated human auditory nerve fibre.Chapter 8, General discussion and conclusions.PhD Thesis, Faculty of Engineering, University of Pretoria, p. 128

[185]. 3. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

[186]. 4. Braze AR, Maksimov GV, Mosekide E, Sosnovtseva OV. (2011): Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance. Interface Focus 1(1): 86-100

[187]. 5. Kang JH, Kim HJ, Lee ER. (2013) Electrophysiological Evaluation of Chronic Inflammatory Demyelinating polyneuropathy and Charcot-Marie-Tooth Type 1: Dispersion and Correlation Analysis. J. Physical Therapy Science, 25(10):1265-1268

[188]. 6. Volman V, Ng LJ. (2014): Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci, 137(8):2155-2163

[189]. 7. Sung JY, Tani J, Park SB, Kiernan MC, Lin CS. (2014): Early identification of ‘acute-onset’ chronic inflammatory demyelinating polyneuropathy. Brain, 137(8):2155-2163, IF=10.226

— (41). Stephanova DI, Daskalova M, Alexandrov AS. (2006): Differences in membrane properties in simulated cases of demyelinating neuropathies. Internodal focal demyelination with conduction block. Journal of Biological Physics, 32:129-144

[190]. 1. Das HK, Sahu PP. (2013): Coupled Nerve: A technique to increase the nerve conduction velocity in demyelinating polyneuropathic patients. Procedia Engineering 64:275-282, ISSN: 1877-7058

— (42). Stephanova DI, Alexandrov AS. (2006): Simulating mild systematic and focal demyelinating neuropathies: membrane property abnormalities. Journal of Integrative Neuroscience, 5:595-623

[191]. 1. Tani J., Chen C-I., Sung J-Y. (2014):  Nerve Excitability Changes in Chronic Inflammatory Demyelinating Polyneuropathy: A New Clinical Diagnostic Biomarker. Review Article, Journal of Experimental and Clinical Medicine, 6(2):43-49

(43) Stephanova DI, Alexandrov AS, Kossev A, Christova L. (2007): Simulating focal demyelinating neuropathies: membrane property abnormalities. Biol Cybern., 96(2):195-208

[192]. 1. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

[193]. 2. Fathi S, Farouk AA. (2011): Utility of stimulated single fiber electromyography (SSF EMG) in detecting peripheral neuropathy in Multiple Sclerosis. Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 48(1):49-55

[194]. 3. Yang H., Chen X, Huang Y, Luo Y, Li H, Xie S. (2012): Membrane potential dynamics of nerve fibers fast probed by action-potential-encoded second harmonic generation. Guangxue Xuebao/Acta Optica Sinica, 32(4):0417001

(44) Christova L, Stephanova D, Kossev A. (2007): Branched EMG-electrodes for stable and selective recordings of single motor unit potentials in human. Biomed Tech, 52:117-121

[195]. 1. Gross V, Reinke C, Dette F, Koch R, Vasilscu D, Penzel T, Koehler U. (2007): Mobile nocturnal long-term monitoring of wheezing and cough. Biomed Tech, 52(1):73-6

[196]. 2. Jacobs CB, Vickrey TL, Venton BJ. (2008): Measuring chemical events in neurotransmission. Wiley Encyclopedia of Chemical Biology, Copyright by John Weley & Sons, Inc., p. 1-12

[197]. 3. Манукова А. (2012). Електронна система за мониторинг на електро-миографски сигнали. Научни трудове на Русенски университет 51(3.1): 96-100

[198]. 4. Kuraszkiewicz B, Wilanowski G, Mlozniak D, Goszczynska H, Piotrkiewicz M. (2014): Review: Selective electrodes for human motoneuron research. Journal of medical and Biological Engineering, 34(5):415–425

(45) Stephanova DI, Daskalova M, Alexandrov AS. (2007): Channels, currents and mechanisms of accommodative processes in simulated cases of systematic demyelinating neuropathies. Brain Research, 1171:138-351

[199]. 1. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

(46) Stephanova D, Daskalova M. (2008): Differences between the channels, currents and mechanisms of conduction slowing/block and accommodative processes in simulated cases of focal demyelinating neuropathies. Eur Biophys J, 37(6):829-842

[200]. 1. Dimitrov AG. (2009): Axonal Hyperactivity. Internodal mechanisms. PhD Thesis, Sofia, Bulgaria

[201]. 2. Angel N. (2011): Equivalent circuit implementation of demyelinated human neuron in spice, PhD Thesis, California Polytechnic State University, San Luis Obispo, USA, 1-95

— (47) Stephanova D, Daskalova M. (2008): Membrane property abnormalities in simulated cases of mild systematic and severe focal demyelinating neuropathies. Eur Biophys J., 37(2):183-195

[202]. 1. Liang C, Howells J, Kennerson M, Nicholson GA, Burke D, Ng K. (2014): Axonal excitability in X-linked dominant Charcot Marie Tooth disease. Clinical Neurophysiology, 125(6):1261-1269

[203]. 2. Tagoe T, Barker M, Jones A, Allcock N, Hamann M. (2014): Auditory nerve perinadal dysmyelination in noise-induced hearing loss. The Journal of Neuroscience, 34(7):2684-2688

[204]. 3. Tani J, Chen C-I, Sung J-Y. (2014): Nerve Excitability Changes in Chronic Inflammatory Demyelinating Polyneuropathy: A New Clinical Diagnostic Biomarker. Review Article. Journal of Experimental and Clinical Medicine, 6(2):43-49

[205]. 4. Volman V, Ng LJ. (2014): Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci, 137(8):2155-2163

— (54) Stephanova D, Kruste SM, Negrev N. (2012): Mechanisms defining the action potential abnormalities in simulated amyotrophic lateral sclerosis. J. Integr. Neurosci., 11(2):137-154

[206]. 1. Q. Ashton Acton (2013): Chapter 1, Biomedicine, In: Motor Neuron Disease: New Insights for the Healthcare Professional, Q. Ashton Acton (ed.), Scholarly Editions TM,  Atlanta, Georgia, USA, ISBN: 978-1-481-66046-4.

— (55) Stephanova DI, Krustev SM, Negrev N. (2012): Mechanisms defining the electrotonic potential abnormalities in simulated amyotrophic lateral sclerosis. J. Integr. Neurosci., 11(2):155-167

[207]. 1. Q. Ashton Acton (2013): Chapter 1, Biomedicine, In: Amyotrophic Lateral Sclerosis: New Insights for the Healthcare Professional, Q. Ashton Acton (ed.), Scholarly Editions TM,  Atlanta Georgia, USA, ISBN: 978-1-481-65682-5.

— (50) Stephanova DI.: Acknowledgements for useful comments

[208]. 1. Panizza M, Nilsson J, Roth B, Rothwell J, Hallett M. (1994): The time constants of motor and sensory peripheral nerve fibers measured with the method of latent addition. Electroencephalography and Clin. Neurophysiol, 93:147-154   (IF=2.538)

[209]. 2. Bostock H, Rothwell JC. (1997): Latent addition in motor and sensory fibres of human periferal nerve. J. Physiol (London), 498:277-294 (IF=4.346)

[210]. 3. Soyez J. (2008): INRIA Rapport Technique. Service IST, Projet CORTEX,

No 0356, pp. 13, 16